csecp256k1

Haskell FFI bindings to bitcoin-core/secp256k1 (docs.ppad.tech/csecp256k1).
git clone git://git.ppad.tech/csecp256k1.git
Log | Files | Refs | README | LICENSE

assumptions.h (4681B)


      1 /***********************************************************************
      2  * Copyright (c) 2020 Pieter Wuille                                    *
      3  * Distributed under the MIT software license, see the accompanying    *
      4  * file COPYING or https://www.opensource.org/licenses/mit-license.php.*
      5  ***********************************************************************/
      6 
      7 #ifndef SECP256K1_ASSUMPTIONS_H
      8 #define SECP256K1_ASSUMPTIONS_H
      9 
     10 #include <limits.h>
     11 
     12 #include "util.h"
     13 #if defined(SECP256K1_INT128_NATIVE)
     14 #include "int128_native.h"
     15 #endif
     16 
     17 /* This library, like most software, relies on a number of compiler implementation defined (but not undefined)
     18    behaviours. Although the behaviours we require are essentially universal we test them specifically here to
     19    reduce the odds of experiencing an unwelcome surprise.
     20 */
     21 
     22 #if defined(__has_attribute)
     23 # if __has_attribute(__unavailable__)
     24 __attribute__((__unavailable__("Don't call this function. It only exists because STATIC_ASSERT cannot be used outside a function.")))
     25 # endif
     26 #endif
     27 static void haskellsecp256k1_v0_1_0_assumption_checker(void) {
     28     /* Bytes are 8 bits. */
     29     STATIC_ASSERT(CHAR_BIT == 8);
     30 
     31     /* No integer promotion for uint32_t. This ensures that we can multiply uintXX_t values where XX >= 32
     32        without signed overflow, which would be undefined behaviour. */
     33     STATIC_ASSERT(UINT_MAX <= UINT32_MAX);
     34 
     35     /* Conversions from unsigned to signed outside of the bounds of the signed type are
     36        implementation-defined. Verify that they function as reinterpreting the lower
     37        bits of the input in two's complement notation. Do this for conversions:
     38        - from uint(N)_t to int(N)_t with negative result
     39        - from uint(2N)_t to int(N)_t with negative result
     40        - from int(2N)_t to int(N)_t with negative result
     41        - from int(2N)_t to int(N)_t with positive result */
     42 
     43     /* To int8_t. */
     44     STATIC_ASSERT(((int8_t)(uint8_t)0xAB == (int8_t)-(int8_t)0x55));
     45     STATIC_ASSERT((int8_t)(uint16_t)0xABCD == (int8_t)-(int8_t)0x33);
     46     STATIC_ASSERT((int8_t)(int16_t)(uint16_t)0xCDEF == (int8_t)(uint8_t)0xEF);
     47     STATIC_ASSERT((int8_t)(int16_t)(uint16_t)0x9234 == (int8_t)(uint8_t)0x34);
     48 
     49     /* To int16_t. */
     50     STATIC_ASSERT((int16_t)(uint16_t)0xBCDE == (int16_t)-(int16_t)0x4322);
     51     STATIC_ASSERT((int16_t)(uint32_t)0xA1B2C3D4 == (int16_t)-(int16_t)0x3C2C);
     52     STATIC_ASSERT((int16_t)(int32_t)(uint32_t)0xC1D2E3F4 == (int16_t)(uint16_t)0xE3F4);
     53     STATIC_ASSERT((int16_t)(int32_t)(uint32_t)0x92345678 == (int16_t)(uint16_t)0x5678);
     54 
     55     /* To int32_t. */
     56     STATIC_ASSERT((int32_t)(uint32_t)0xB2C3D4E5 == (int32_t)-(int32_t)0x4D3C2B1B);
     57     STATIC_ASSERT((int32_t)(uint64_t)0xA123B456C789D012ULL == (int32_t)-(int32_t)0x38762FEE);
     58     STATIC_ASSERT((int32_t)(int64_t)(uint64_t)0xC1D2E3F4A5B6C7D8ULL == (int32_t)(uint32_t)0xA5B6C7D8);
     59     STATIC_ASSERT((int32_t)(int64_t)(uint64_t)0xABCDEF0123456789ULL == (int32_t)(uint32_t)0x23456789);
     60 
     61     /* To int64_t. */
     62     STATIC_ASSERT((int64_t)(uint64_t)0xB123C456D789E012ULL == (int64_t)-(int64_t)0x4EDC3BA928761FEEULL);
     63 #if defined(SECP256K1_INT128_NATIVE)
     64     STATIC_ASSERT((int64_t)(((uint128_t)0xA1234567B8901234ULL << 64) + 0xC5678901D2345678ULL) == (int64_t)-(int64_t)0x3A9876FE2DCBA988ULL);
     65     STATIC_ASSERT(((int64_t)(int128_t)(((uint128_t)0xB1C2D3E4F5A6B7C8ULL << 64) + 0xD9E0F1A2B3C4D5E6ULL)) == (int64_t)(uint64_t)0xD9E0F1A2B3C4D5E6ULL);
     66     STATIC_ASSERT(((int64_t)(int128_t)(((uint128_t)0xABCDEF0123456789ULL << 64) + 0x0123456789ABCDEFULL)) == (int64_t)(uint64_t)0x0123456789ABCDEFULL);
     67 
     68     /* To int128_t. */
     69     STATIC_ASSERT((int128_t)(((uint128_t)0xB1234567C8901234ULL << 64) + 0xD5678901E2345678ULL) == (int128_t)(-(int128_t)0x8E1648B3F50E80DCULL * 0x8E1648B3F50E80DDULL + 0x5EA688D5482F9464ULL));
     70 #endif
     71 
     72     /* Right shift on negative signed values is implementation defined. Verify that it
     73        acts as a right shift in two's complement with sign extension (i.e duplicating
     74        the top bit into newly added bits). */
     75     STATIC_ASSERT((((int8_t)0xE8) >> 2) == (int8_t)(uint8_t)0xFA);
     76     STATIC_ASSERT((((int16_t)0xE9AC) >> 4) == (int16_t)(uint16_t)0xFE9A);
     77     STATIC_ASSERT((((int32_t)0x937C918A) >> 9) == (int32_t)(uint32_t)0xFFC9BE48);
     78     STATIC_ASSERT((((int64_t)0xA8B72231DF9CF4B9ULL) >> 19) == (int64_t)(uint64_t)0xFFFFF516E4463BF3ULL);
     79 #if defined(SECP256K1_INT128_NATIVE)
     80     STATIC_ASSERT((((int128_t)(((uint128_t)0xCD833A65684A0DBCULL << 64) + 0xB349312F71EA7637ULL)) >> 39) == (int128_t)(((uint128_t)0xFFFFFFFFFF9B0674ULL << 64) + 0xCAD0941B79669262ULL));
     81 #endif
     82 
     83     /* This function is not supposed to be called. */
     84     VERIFY_CHECK(0);
     85 }
     86 
     87 #endif /* SECP256K1_ASSUMPTIONS_H */