csecp256k1

Haskell FFI bindings to bitcoin-core/secp256k1 (docs.ppad.tech/csecp256k1).
git clone git://git.ppad.tech/csecp256k1.git
Log | Files | Refs | README | LICENSE

bench_internal.c (18346B)


      1 /***********************************************************************
      2  * Copyright (c) 2014-2015 Pieter Wuille                               *
      3  * Distributed under the MIT software license, see the accompanying    *
      4  * file COPYING or https://www.opensource.org/licenses/mit-license.php.*
      5  ***********************************************************************/
      6 #include <stdio.h>
      7 
      8 #include "secp256k1.c"
      9 #include "../include/secp256k1.h"
     10 
     11 #include "assumptions.h"
     12 #include "util.h"
     13 #include "hash_impl.h"
     14 #include "field_impl.h"
     15 #include "group_impl.h"
     16 #include "scalar_impl.h"
     17 #include "ecmult_impl.h"
     18 #include "bench.h"
     19 
     20 static void help(int default_iters) {
     21     printf("Benchmarks various internal routines.\n");
     22     printf("\n");
     23     printf("The default number of iterations for each benchmark is %d. This can be\n", default_iters);
     24     printf("customized using the SECP256K1_BENCH_ITERS environment variable.\n");
     25     printf("\n");
     26     printf("Usage: ./bench_internal [args]\n");
     27     printf("By default, all benchmarks will be run.\n");
     28     printf("args:\n");
     29     printf("    help       : display this help and exit\n");
     30     printf("    scalar     : all scalar operations (add, half, inverse, mul, negate, split)\n");
     31     printf("    field      : all field operations (half, inverse, issquare, mul, normalize, sqr, sqrt)\n");
     32     printf("    group      : all group operations (add, double, to_affine)\n");
     33     printf("    ecmult     : all point multiplication operations (ecmult_wnaf) \n");
     34     printf("    hash       : all hash algorithms (hmac, rng6979, sha256)\n");
     35     printf("    context    : all context object operations (context_create)\n");
     36     printf("\n");
     37 }
     38 
     39 typedef struct {
     40     haskellsecp256k1_v0_1_0_scalar scalar[2];
     41     haskellsecp256k1_v0_1_0_fe fe[4];
     42     haskellsecp256k1_v0_1_0_ge ge[2];
     43     haskellsecp256k1_v0_1_0_gej gej[2];
     44     unsigned char data[64];
     45     int wnaf[256];
     46 } bench_inv;
     47 
     48 static void bench_setup(void* arg) {
     49     bench_inv *data = (bench_inv*)arg;
     50 
     51     static const unsigned char init[4][32] = {
     52         /* Initializer for scalar[0], fe[0], first half of data, the X coordinate of ge[0],
     53            and the (implied affine) X coordinate of gej[0]. */
     54         {
     55             0x02, 0x03, 0x05, 0x07, 0x0b, 0x0d, 0x11, 0x13,
     56             0x17, 0x1d, 0x1f, 0x25, 0x29, 0x2b, 0x2f, 0x35,
     57             0x3b, 0x3d, 0x43, 0x47, 0x49, 0x4f, 0x53, 0x59,
     58             0x61, 0x65, 0x67, 0x6b, 0x6d, 0x71, 0x7f, 0x83
     59         },
     60         /* Initializer for scalar[1], fe[1], first half of data, the X coordinate of ge[1],
     61            and the (implied affine) X coordinate of gej[1]. */
     62         {
     63             0x82, 0x83, 0x85, 0x87, 0x8b, 0x8d, 0x81, 0x83,
     64             0x97, 0xad, 0xaf, 0xb5, 0xb9, 0xbb, 0xbf, 0xc5,
     65             0xdb, 0xdd, 0xe3, 0xe7, 0xe9, 0xef, 0xf3, 0xf9,
     66             0x11, 0x15, 0x17, 0x1b, 0x1d, 0xb1, 0xbf, 0xd3
     67         },
     68         /* Initializer for fe[2] and the Z coordinate of gej[0]. */
     69         {
     70             0x3d, 0x2d, 0xef, 0xf4, 0x25, 0x98, 0x4f, 0x5d,
     71             0xe2, 0xca, 0x5f, 0x41, 0x3f, 0x3f, 0xce, 0x44,
     72             0xaa, 0x2c, 0x53, 0x8a, 0xc6, 0x59, 0x1f, 0x38,
     73             0x38, 0x23, 0xe4, 0x11, 0x27, 0xc6, 0xa0, 0xe7
     74         },
     75         /* Initializer for fe[3] and the Z coordinate of gej[1]. */
     76         {
     77             0xbd, 0x21, 0xa5, 0xe1, 0x13, 0x50, 0x73, 0x2e,
     78             0x52, 0x98, 0xc8, 0x9e, 0xab, 0x00, 0xa2, 0x68,
     79             0x43, 0xf5, 0xd7, 0x49, 0x80, 0x72, 0xa7, 0xf3,
     80             0xd7, 0x60, 0xe6, 0xab, 0x90, 0x92, 0xdf, 0xc5
     81         }
     82     };
     83 
     84     haskellsecp256k1_v0_1_0_scalar_set_b32(&data->scalar[0], init[0], NULL);
     85     haskellsecp256k1_v0_1_0_scalar_set_b32(&data->scalar[1], init[1], NULL);
     86     haskellsecp256k1_v0_1_0_fe_set_b32_limit(&data->fe[0], init[0]);
     87     haskellsecp256k1_v0_1_0_fe_set_b32_limit(&data->fe[1], init[1]);
     88     haskellsecp256k1_v0_1_0_fe_set_b32_limit(&data->fe[2], init[2]);
     89     haskellsecp256k1_v0_1_0_fe_set_b32_limit(&data->fe[3], init[3]);
     90     CHECK(haskellsecp256k1_v0_1_0_ge_set_xo_var(&data->ge[0], &data->fe[0], 0));
     91     CHECK(haskellsecp256k1_v0_1_0_ge_set_xo_var(&data->ge[1], &data->fe[1], 1));
     92     haskellsecp256k1_v0_1_0_gej_set_ge(&data->gej[0], &data->ge[0]);
     93     haskellsecp256k1_v0_1_0_gej_rescale(&data->gej[0], &data->fe[2]);
     94     haskellsecp256k1_v0_1_0_gej_set_ge(&data->gej[1], &data->ge[1]);
     95     haskellsecp256k1_v0_1_0_gej_rescale(&data->gej[1], &data->fe[3]);
     96     memcpy(data->data, init[0], 32);
     97     memcpy(data->data + 32, init[1], 32);
     98 }
     99 
    100 static void bench_scalar_add(void* arg, int iters) {
    101     int i, j = 0;
    102     bench_inv *data = (bench_inv*)arg;
    103 
    104     for (i = 0; i < iters; i++) {
    105         j += haskellsecp256k1_v0_1_0_scalar_add(&data->scalar[0], &data->scalar[0], &data->scalar[1]);
    106     }
    107     CHECK(j <= iters);
    108 }
    109 
    110 static void bench_scalar_negate(void* arg, int iters) {
    111     int i;
    112     bench_inv *data = (bench_inv*)arg;
    113 
    114     for (i = 0; i < iters; i++) {
    115         haskellsecp256k1_v0_1_0_scalar_negate(&data->scalar[0], &data->scalar[0]);
    116     }
    117 }
    118 
    119 static void bench_scalar_half(void* arg, int iters) {
    120     int i;
    121     bench_inv *data = (bench_inv*)arg;
    122     haskellsecp256k1_v0_1_0_scalar s = data->scalar[0];
    123 
    124     for (i = 0; i < iters; i++) {
    125         haskellsecp256k1_v0_1_0_scalar_half(&s, &s);
    126     }
    127 
    128     data->scalar[0] = s;
    129 }
    130 
    131 static void bench_scalar_mul(void* arg, int iters) {
    132     int i;
    133     bench_inv *data = (bench_inv*)arg;
    134 
    135     for (i = 0; i < iters; i++) {
    136         haskellsecp256k1_v0_1_0_scalar_mul(&data->scalar[0], &data->scalar[0], &data->scalar[1]);
    137     }
    138 }
    139 
    140 static void bench_scalar_split(void* arg, int iters) {
    141     int i, j = 0;
    142     bench_inv *data = (bench_inv*)arg;
    143     haskellsecp256k1_v0_1_0_scalar tmp;
    144 
    145     for (i = 0; i < iters; i++) {
    146         haskellsecp256k1_v0_1_0_scalar_split_lambda(&tmp, &data->scalar[1], &data->scalar[0]);
    147         j += haskellsecp256k1_v0_1_0_scalar_add(&data->scalar[0], &tmp, &data->scalar[1]);
    148     }
    149     CHECK(j <= iters);
    150 }
    151 
    152 static void bench_scalar_inverse(void* arg, int iters) {
    153     int i, j = 0;
    154     bench_inv *data = (bench_inv*)arg;
    155 
    156     for (i = 0; i < iters; i++) {
    157         haskellsecp256k1_v0_1_0_scalar_inverse(&data->scalar[0], &data->scalar[0]);
    158         j += haskellsecp256k1_v0_1_0_scalar_add(&data->scalar[0], &data->scalar[0], &data->scalar[1]);
    159     }
    160     CHECK(j <= iters);
    161 }
    162 
    163 static void bench_scalar_inverse_var(void* arg, int iters) {
    164     int i, j = 0;
    165     bench_inv *data = (bench_inv*)arg;
    166 
    167     for (i = 0; i < iters; i++) {
    168         haskellsecp256k1_v0_1_0_scalar_inverse_var(&data->scalar[0], &data->scalar[0]);
    169         j += haskellsecp256k1_v0_1_0_scalar_add(&data->scalar[0], &data->scalar[0], &data->scalar[1]);
    170     }
    171     CHECK(j <= iters);
    172 }
    173 
    174 static void bench_field_half(void* arg, int iters) {
    175     int i;
    176     bench_inv *data = (bench_inv*)arg;
    177 
    178     for (i = 0; i < iters; i++) {
    179         haskellsecp256k1_v0_1_0_fe_half(&data->fe[0]);
    180     }
    181 }
    182 
    183 static void bench_field_normalize(void* arg, int iters) {
    184     int i;
    185     bench_inv *data = (bench_inv*)arg;
    186 
    187     for (i = 0; i < iters; i++) {
    188         haskellsecp256k1_v0_1_0_fe_normalize(&data->fe[0]);
    189     }
    190 }
    191 
    192 static void bench_field_normalize_weak(void* arg, int iters) {
    193     int i;
    194     bench_inv *data = (bench_inv*)arg;
    195 
    196     for (i = 0; i < iters; i++) {
    197         haskellsecp256k1_v0_1_0_fe_normalize_weak(&data->fe[0]);
    198     }
    199 }
    200 
    201 static void bench_field_mul(void* arg, int iters) {
    202     int i;
    203     bench_inv *data = (bench_inv*)arg;
    204 
    205     for (i = 0; i < iters; i++) {
    206         haskellsecp256k1_v0_1_0_fe_mul(&data->fe[0], &data->fe[0], &data->fe[1]);
    207     }
    208 }
    209 
    210 static void bench_field_sqr(void* arg, int iters) {
    211     int i;
    212     bench_inv *data = (bench_inv*)arg;
    213 
    214     for (i = 0; i < iters; i++) {
    215         haskellsecp256k1_v0_1_0_fe_sqr(&data->fe[0], &data->fe[0]);
    216     }
    217 }
    218 
    219 static void bench_field_inverse(void* arg, int iters) {
    220     int i;
    221     bench_inv *data = (bench_inv*)arg;
    222 
    223     for (i = 0; i < iters; i++) {
    224         haskellsecp256k1_v0_1_0_fe_inv(&data->fe[0], &data->fe[0]);
    225         haskellsecp256k1_v0_1_0_fe_add(&data->fe[0], &data->fe[1]);
    226     }
    227 }
    228 
    229 static void bench_field_inverse_var(void* arg, int iters) {
    230     int i;
    231     bench_inv *data = (bench_inv*)arg;
    232 
    233     for (i = 0; i < iters; i++) {
    234         haskellsecp256k1_v0_1_0_fe_inv_var(&data->fe[0], &data->fe[0]);
    235         haskellsecp256k1_v0_1_0_fe_add(&data->fe[0], &data->fe[1]);
    236     }
    237 }
    238 
    239 static void bench_field_sqrt(void* arg, int iters) {
    240     int i, j = 0;
    241     bench_inv *data = (bench_inv*)arg;
    242     haskellsecp256k1_v0_1_0_fe t;
    243 
    244     for (i = 0; i < iters; i++) {
    245         t = data->fe[0];
    246         j += haskellsecp256k1_v0_1_0_fe_sqrt(&data->fe[0], &t);
    247         haskellsecp256k1_v0_1_0_fe_add(&data->fe[0], &data->fe[1]);
    248     }
    249     CHECK(j <= iters);
    250 }
    251 
    252 static void bench_field_is_square_var(void* arg, int iters) {
    253     int i, j = 0;
    254     bench_inv *data = (bench_inv*)arg;
    255     haskellsecp256k1_v0_1_0_fe t = data->fe[0];
    256 
    257     for (i = 0; i < iters; i++) {
    258         j += haskellsecp256k1_v0_1_0_fe_is_square_var(&t);
    259         haskellsecp256k1_v0_1_0_fe_add(&t, &data->fe[1]);
    260         haskellsecp256k1_v0_1_0_fe_normalize_var(&t);
    261     }
    262     CHECK(j <= iters);
    263 }
    264 
    265 static void bench_group_double_var(void* arg, int iters) {
    266     int i;
    267     bench_inv *data = (bench_inv*)arg;
    268 
    269     for (i = 0; i < iters; i++) {
    270         haskellsecp256k1_v0_1_0_gej_double_var(&data->gej[0], &data->gej[0], NULL);
    271     }
    272 }
    273 
    274 static void bench_group_add_var(void* arg, int iters) {
    275     int i;
    276     bench_inv *data = (bench_inv*)arg;
    277 
    278     for (i = 0; i < iters; i++) {
    279         haskellsecp256k1_v0_1_0_gej_add_var(&data->gej[0], &data->gej[0], &data->gej[1], NULL);
    280     }
    281 }
    282 
    283 static void bench_group_add_affine(void* arg, int iters) {
    284     int i;
    285     bench_inv *data = (bench_inv*)arg;
    286 
    287     for (i = 0; i < iters; i++) {
    288         haskellsecp256k1_v0_1_0_gej_add_ge(&data->gej[0], &data->gej[0], &data->ge[1]);
    289     }
    290 }
    291 
    292 static void bench_group_add_affine_var(void* arg, int iters) {
    293     int i;
    294     bench_inv *data = (bench_inv*)arg;
    295 
    296     for (i = 0; i < iters; i++) {
    297         haskellsecp256k1_v0_1_0_gej_add_ge_var(&data->gej[0], &data->gej[0], &data->ge[1], NULL);
    298     }
    299 }
    300 
    301 static void bench_group_add_zinv_var(void* arg, int iters) {
    302     int i;
    303     bench_inv *data = (bench_inv*)arg;
    304 
    305     for (i = 0; i < iters; i++) {
    306         haskellsecp256k1_v0_1_0_gej_add_zinv_var(&data->gej[0], &data->gej[0], &data->ge[1], &data->gej[0].y);
    307     }
    308 }
    309 
    310 static void bench_group_to_affine_var(void* arg, int iters) {
    311     int i;
    312     bench_inv *data = (bench_inv*)arg;
    313 
    314     for (i = 0; i < iters; ++i) {
    315         haskellsecp256k1_v0_1_0_ge_set_gej_var(&data->ge[1], &data->gej[0]);
    316         /* Use the output affine X/Y coordinates to vary the input X/Y/Z coordinates.
    317            Note that the resulting coordinates will generally not correspond to a point
    318            on the curve, but this is not a problem for the code being benchmarked here.
    319            Adding and normalizing have less overhead than EC operations (which could
    320            guarantee the point remains on the curve). */
    321         haskellsecp256k1_v0_1_0_fe_add(&data->gej[0].x, &data->ge[1].y);
    322         haskellsecp256k1_v0_1_0_fe_add(&data->gej[0].y, &data->fe[2]);
    323         haskellsecp256k1_v0_1_0_fe_add(&data->gej[0].z, &data->ge[1].x);
    324         haskellsecp256k1_v0_1_0_fe_normalize_var(&data->gej[0].x);
    325         haskellsecp256k1_v0_1_0_fe_normalize_var(&data->gej[0].y);
    326         haskellsecp256k1_v0_1_0_fe_normalize_var(&data->gej[0].z);
    327     }
    328 }
    329 
    330 static void bench_ecmult_wnaf(void* arg, int iters) {
    331     int i, bits = 0, overflow = 0;
    332     bench_inv *data = (bench_inv*)arg;
    333 
    334     for (i = 0; i < iters; i++) {
    335         bits += haskellsecp256k1_v0_1_0_ecmult_wnaf(data->wnaf, 256, &data->scalar[0], WINDOW_A);
    336         overflow += haskellsecp256k1_v0_1_0_scalar_add(&data->scalar[0], &data->scalar[0], &data->scalar[1]);
    337     }
    338     CHECK(overflow >= 0);
    339     CHECK(bits <= 256*iters);
    340 }
    341 
    342 static void bench_sha256(void* arg, int iters) {
    343     int i;
    344     bench_inv *data = (bench_inv*)arg;
    345     haskellsecp256k1_v0_1_0_sha256 sha;
    346 
    347     for (i = 0; i < iters; i++) {
    348         haskellsecp256k1_v0_1_0_sha256_initialize(&sha);
    349         haskellsecp256k1_v0_1_0_sha256_write(&sha, data->data, 32);
    350         haskellsecp256k1_v0_1_0_sha256_finalize(&sha, data->data);
    351     }
    352 }
    353 
    354 static void bench_hmac_sha256(void* arg, int iters) {
    355     int i;
    356     bench_inv *data = (bench_inv*)arg;
    357     haskellsecp256k1_v0_1_0_hmac_sha256 hmac;
    358 
    359     for (i = 0; i < iters; i++) {
    360         haskellsecp256k1_v0_1_0_hmac_sha256_initialize(&hmac, data->data, 32);
    361         haskellsecp256k1_v0_1_0_hmac_sha256_write(&hmac, data->data, 32);
    362         haskellsecp256k1_v0_1_0_hmac_sha256_finalize(&hmac, data->data);
    363     }
    364 }
    365 
    366 static void bench_rfc6979_hmac_sha256(void* arg, int iters) {
    367     int i;
    368     bench_inv *data = (bench_inv*)arg;
    369     haskellsecp256k1_v0_1_0_rfc6979_hmac_sha256 rng;
    370 
    371     for (i = 0; i < iters; i++) {
    372         haskellsecp256k1_v0_1_0_rfc6979_hmac_sha256_initialize(&rng, data->data, 64);
    373         haskellsecp256k1_v0_1_0_rfc6979_hmac_sha256_generate(&rng, data->data, 32);
    374     }
    375 }
    376 
    377 static void bench_context(void* arg, int iters) {
    378     int i;
    379     (void)arg;
    380     for (i = 0; i < iters; i++) {
    381         haskellsecp256k1_v0_1_0_context_destroy(haskellsecp256k1_v0_1_0_context_create(SECP256K1_CONTEXT_NONE));
    382     }
    383 }
    384 
    385 int main(int argc, char **argv) {
    386     bench_inv data;
    387     int default_iters = 20000;
    388     int iters = get_iters(default_iters);
    389     int d = argc == 1; /* default */
    390 
    391     if (argc > 1) {
    392         if (have_flag(argc, argv, "-h")
    393            || have_flag(argc, argv, "--help")
    394            || have_flag(argc, argv, "help")) {
    395             help(default_iters);
    396             return 0;
    397         }
    398     }
    399 
    400     print_output_table_header_row();
    401 
    402     if (d || have_flag(argc, argv, "scalar") || have_flag(argc, argv, "half")) run_benchmark("scalar_half", bench_scalar_half, bench_setup, NULL, &data, 10, iters*100);
    403     if (d || have_flag(argc, argv, "scalar") || have_flag(argc, argv, "add")) run_benchmark("scalar_add", bench_scalar_add, bench_setup, NULL, &data, 10, iters*100);
    404     if (d || have_flag(argc, argv, "scalar") || have_flag(argc, argv, "negate")) run_benchmark("scalar_negate", bench_scalar_negate, bench_setup, NULL, &data, 10, iters*100);
    405     if (d || have_flag(argc, argv, "scalar") || have_flag(argc, argv, "mul")) run_benchmark("scalar_mul", bench_scalar_mul, bench_setup, NULL, &data, 10, iters*10);
    406     if (d || have_flag(argc, argv, "scalar") || have_flag(argc, argv, "split")) run_benchmark("scalar_split", bench_scalar_split, bench_setup, NULL, &data, 10, iters);
    407     if (d || have_flag(argc, argv, "scalar") || have_flag(argc, argv, "inverse")) run_benchmark("scalar_inverse", bench_scalar_inverse, bench_setup, NULL, &data, 10, iters);
    408     if (d || have_flag(argc, argv, "scalar") || have_flag(argc, argv, "inverse")) run_benchmark("scalar_inverse_var", bench_scalar_inverse_var, bench_setup, NULL, &data, 10, iters);
    409 
    410     if (d || have_flag(argc, argv, "field") || have_flag(argc, argv, "half")) run_benchmark("field_half", bench_field_half, bench_setup, NULL, &data, 10, iters*100);
    411     if (d || have_flag(argc, argv, "field") || have_flag(argc, argv, "normalize")) run_benchmark("field_normalize", bench_field_normalize, bench_setup, NULL, &data, 10, iters*100);
    412     if (d || have_flag(argc, argv, "field") || have_flag(argc, argv, "normalize")) run_benchmark("field_normalize_weak", bench_field_normalize_weak, bench_setup, NULL, &data, 10, iters*100);
    413     if (d || have_flag(argc, argv, "field") || have_flag(argc, argv, "sqr")) run_benchmark("field_sqr", bench_field_sqr, bench_setup, NULL, &data, 10, iters*10);
    414     if (d || have_flag(argc, argv, "field") || have_flag(argc, argv, "mul")) run_benchmark("field_mul", bench_field_mul, bench_setup, NULL, &data, 10, iters*10);
    415     if (d || have_flag(argc, argv, "field") || have_flag(argc, argv, "inverse")) run_benchmark("field_inverse", bench_field_inverse, bench_setup, NULL, &data, 10, iters);
    416     if (d || have_flag(argc, argv, "field") || have_flag(argc, argv, "inverse")) run_benchmark("field_inverse_var", bench_field_inverse_var, bench_setup, NULL, &data, 10, iters);
    417     if (d || have_flag(argc, argv, "field") || have_flag(argc, argv, "issquare")) run_benchmark("field_is_square_var", bench_field_is_square_var, bench_setup, NULL, &data, 10, iters);
    418     if (d || have_flag(argc, argv, "field") || have_flag(argc, argv, "sqrt")) run_benchmark("field_sqrt", bench_field_sqrt, bench_setup, NULL, &data, 10, iters);
    419 
    420     if (d || have_flag(argc, argv, "group") || have_flag(argc, argv, "double")) run_benchmark("group_double_var", bench_group_double_var, bench_setup, NULL, &data, 10, iters*10);
    421     if (d || have_flag(argc, argv, "group") || have_flag(argc, argv, "add")) run_benchmark("group_add_var", bench_group_add_var, bench_setup, NULL, &data, 10, iters*10);
    422     if (d || have_flag(argc, argv, "group") || have_flag(argc, argv, "add")) run_benchmark("group_add_affine", bench_group_add_affine, bench_setup, NULL, &data, 10, iters*10);
    423     if (d || have_flag(argc, argv, "group") || have_flag(argc, argv, "add")) run_benchmark("group_add_affine_var", bench_group_add_affine_var, bench_setup, NULL, &data, 10, iters*10);
    424     if (d || have_flag(argc, argv, "group") || have_flag(argc, argv, "add")) run_benchmark("group_add_zinv_var", bench_group_add_zinv_var, bench_setup, NULL, &data, 10, iters*10);
    425     if (d || have_flag(argc, argv, "group") || have_flag(argc, argv, "to_affine")) run_benchmark("group_to_affine_var", bench_group_to_affine_var, bench_setup, NULL, &data, 10, iters);
    426 
    427     if (d || have_flag(argc, argv, "ecmult") || have_flag(argc, argv, "wnaf")) run_benchmark("ecmult_wnaf", bench_ecmult_wnaf, bench_setup, NULL, &data, 10, iters);
    428 
    429     if (d || have_flag(argc, argv, "hash") || have_flag(argc, argv, "sha256")) run_benchmark("hash_sha256", bench_sha256, bench_setup, NULL, &data, 10, iters);
    430     if (d || have_flag(argc, argv, "hash") || have_flag(argc, argv, "hmac")) run_benchmark("hash_hmac_sha256", bench_hmac_sha256, bench_setup, NULL, &data, 10, iters);
    431     if (d || have_flag(argc, argv, "hash") || have_flag(argc, argv, "rng6979")) run_benchmark("hash_rfc6979_hmac_sha256", bench_rfc6979_hmac_sha256, bench_setup, NULL, &data, 10, iters);
    432 
    433     if (d || have_flag(argc, argv, "context")) run_benchmark("context_create", bench_context, bench_setup, NULL, &data, 10, iters);
    434 
    435     return 0;
    436 }