csecp256k1

Haskell FFI bindings to bitcoin-core/secp256k1 (docs.ppad.tech/csecp256k1).
git clone git://git.ppad.tech/csecp256k1.git
Log | Files | Refs | README | LICENSE

ecdsa_impl.h (11638B)


      1 /***********************************************************************
      2  * Copyright (c) 2013-2015 Pieter Wuille                               *
      3  * Distributed under the MIT software license, see the accompanying    *
      4  * file COPYING or https://www.opensource.org/licenses/mit-license.php.*
      5  ***********************************************************************/
      6 
      7 
      8 #ifndef SECP256K1_ECDSA_IMPL_H
      9 #define SECP256K1_ECDSA_IMPL_H
     10 
     11 #include "scalar.h"
     12 #include "field.h"
     13 #include "group.h"
     14 #include "ecmult.h"
     15 #include "ecmult_gen.h"
     16 #include "ecdsa.h"
     17 
     18 /** Group order for secp256k1 defined as 'n' in "Standards for Efficient Cryptography" (SEC2) 2.7.1
     19  *  $ sage -c 'load("haskellsecp256k1_v0_1_0_params.sage"); print(hex(N))'
     20  *  0xfffffffffffffffffffffffffffffffebaaedce6af48a03bbfd25e8cd0364141
     21  */
     22 static const haskellsecp256k1_v0_1_0_fe haskellsecp256k1_v0_1_0_ecdsa_const_order_as_fe = SECP256K1_FE_CONST(
     23     0xFFFFFFFFUL, 0xFFFFFFFFUL, 0xFFFFFFFFUL, 0xFFFFFFFEUL,
     24     0xBAAEDCE6UL, 0xAF48A03BUL, 0xBFD25E8CUL, 0xD0364141UL
     25 );
     26 
     27 /** Difference between field and order, values 'p' and 'n' values defined in
     28  *  "Standards for Efficient Cryptography" (SEC2) 2.7.1.
     29  *  $ sage -c 'load("haskellsecp256k1_v0_1_0_params.sage"); print(hex(P-N))'
     30  *  0x14551231950b75fc4402da1722fc9baee
     31  */
     32 static const haskellsecp256k1_v0_1_0_fe haskellsecp256k1_v0_1_0_ecdsa_const_p_minus_order = SECP256K1_FE_CONST(
     33     0, 0, 0, 1, 0x45512319UL, 0x50B75FC4UL, 0x402DA172UL, 0x2FC9BAEEUL
     34 );
     35 
     36 static int haskellsecp256k1_v0_1_0_der_read_len(size_t *len, const unsigned char **sigp, const unsigned char *sigend) {
     37     size_t lenleft;
     38     unsigned char b1;
     39     VERIFY_CHECK(len != NULL);
     40     *len = 0;
     41     if (*sigp >= sigend) {
     42         return 0;
     43     }
     44     b1 = *((*sigp)++);
     45     if (b1 == 0xFF) {
     46         /* X.690-0207 8.1.3.5.c the value 0xFF shall not be used. */
     47         return 0;
     48     }
     49     if ((b1 & 0x80) == 0) {
     50         /* X.690-0207 8.1.3.4 short form length octets */
     51         *len = b1;
     52         return 1;
     53     }
     54     if (b1 == 0x80) {
     55         /* Indefinite length is not allowed in DER. */
     56         return 0;
     57     }
     58     /* X.690-207 8.1.3.5 long form length octets */
     59     lenleft = b1 & 0x7F; /* lenleft is at least 1 */
     60     if (lenleft > (size_t)(sigend - *sigp)) {
     61         return 0;
     62     }
     63     if (**sigp == 0) {
     64         /* Not the shortest possible length encoding. */
     65         return 0;
     66     }
     67     if (lenleft > sizeof(size_t)) {
     68         /* The resulting length would exceed the range of a size_t, so
     69          * it is certainly longer than the passed array size. */
     70         return 0;
     71     }
     72     while (lenleft > 0) {
     73         *len = (*len << 8) | **sigp;
     74         (*sigp)++;
     75         lenleft--;
     76     }
     77     if (*len > (size_t)(sigend - *sigp)) {
     78         /* Result exceeds the length of the passed array.
     79            (Checking this is the responsibility of the caller but it
     80            can't hurt do it here, too.) */
     81         return 0;
     82     }
     83     if (*len < 128) {
     84         /* Not the shortest possible length encoding. */
     85         return 0;
     86     }
     87     return 1;
     88 }
     89 
     90 static int haskellsecp256k1_v0_1_0_der_parse_integer(haskellsecp256k1_v0_1_0_scalar *r, const unsigned char **sig, const unsigned char *sigend) {
     91     int overflow = 0;
     92     unsigned char ra[32] = {0};
     93     size_t rlen;
     94 
     95     if (*sig == sigend || **sig != 0x02) {
     96         /* Not a primitive integer (X.690-0207 8.3.1). */
     97         return 0;
     98     }
     99     (*sig)++;
    100     if (haskellsecp256k1_v0_1_0_der_read_len(&rlen, sig, sigend) == 0) {
    101         return 0;
    102     }
    103     if (rlen == 0 || rlen > (size_t)(sigend - *sig)) {
    104         /* Exceeds bounds or not at least length 1 (X.690-0207 8.3.1).  */
    105         return 0;
    106     }
    107     if (**sig == 0x00 && rlen > 1 && (((*sig)[1]) & 0x80) == 0x00) {
    108         /* Excessive 0x00 padding. */
    109         return 0;
    110     }
    111     if (**sig == 0xFF && rlen > 1 && (((*sig)[1]) & 0x80) == 0x80) {
    112         /* Excessive 0xFF padding. */
    113         return 0;
    114     }
    115     if ((**sig & 0x80) == 0x80) {
    116         /* Negative. */
    117         overflow = 1;
    118     }
    119     /* There is at most one leading zero byte:
    120      * if there were two leading zero bytes, we would have failed and returned 0
    121      * because of excessive 0x00 padding already. */
    122     if (rlen > 0 && **sig == 0) {
    123         /* Skip leading zero byte */
    124         rlen--;
    125         (*sig)++;
    126     }
    127     if (rlen > 32) {
    128         overflow = 1;
    129     }
    130     if (!overflow) {
    131         if (rlen) memcpy(ra + 32 - rlen, *sig, rlen);
    132         haskellsecp256k1_v0_1_0_scalar_set_b32(r, ra, &overflow);
    133     }
    134     if (overflow) {
    135         haskellsecp256k1_v0_1_0_scalar_set_int(r, 0);
    136     }
    137     (*sig) += rlen;
    138     return 1;
    139 }
    140 
    141 static int haskellsecp256k1_v0_1_0_ecdsa_sig_parse(haskellsecp256k1_v0_1_0_scalar *rr, haskellsecp256k1_v0_1_0_scalar *rs, const unsigned char *sig, size_t size) {
    142     const unsigned char *sigend = sig + size;
    143     size_t rlen;
    144     if (sig == sigend || *(sig++) != 0x30) {
    145         /* The encoding doesn't start with a constructed sequence (X.690-0207 8.9.1). */
    146         return 0;
    147     }
    148     if (haskellsecp256k1_v0_1_0_der_read_len(&rlen, &sig, sigend) == 0) {
    149         return 0;
    150     }
    151     if (rlen != (size_t)(sigend - sig)) {
    152         /* Tuple exceeds bounds or garage after tuple. */
    153         return 0;
    154     }
    155 
    156     if (!haskellsecp256k1_v0_1_0_der_parse_integer(rr, &sig, sigend)) {
    157         return 0;
    158     }
    159     if (!haskellsecp256k1_v0_1_0_der_parse_integer(rs, &sig, sigend)) {
    160         return 0;
    161     }
    162 
    163     if (sig != sigend) {
    164         /* Trailing garbage inside tuple. */
    165         return 0;
    166     }
    167 
    168     return 1;
    169 }
    170 
    171 static int haskellsecp256k1_v0_1_0_ecdsa_sig_serialize(unsigned char *sig, size_t *size, const haskellsecp256k1_v0_1_0_scalar* ar, const haskellsecp256k1_v0_1_0_scalar* as) {
    172     unsigned char r[33] = {0}, s[33] = {0};
    173     unsigned char *rp = r, *sp = s;
    174     size_t lenR = 33, lenS = 33;
    175     haskellsecp256k1_v0_1_0_scalar_get_b32(&r[1], ar);
    176     haskellsecp256k1_v0_1_0_scalar_get_b32(&s[1], as);
    177     while (lenR > 1 && rp[0] == 0 && rp[1] < 0x80) { lenR--; rp++; }
    178     while (lenS > 1 && sp[0] == 0 && sp[1] < 0x80) { lenS--; sp++; }
    179     if (*size < 6+lenS+lenR) {
    180         *size = 6 + lenS + lenR;
    181         return 0;
    182     }
    183     *size = 6 + lenS + lenR;
    184     sig[0] = 0x30;
    185     sig[1] = 4 + lenS + lenR;
    186     sig[2] = 0x02;
    187     sig[3] = lenR;
    188     memcpy(sig+4, rp, lenR);
    189     sig[4+lenR] = 0x02;
    190     sig[5+lenR] = lenS;
    191     memcpy(sig+lenR+6, sp, lenS);
    192     return 1;
    193 }
    194 
    195 static int haskellsecp256k1_v0_1_0_ecdsa_sig_verify(const haskellsecp256k1_v0_1_0_scalar *sigr, const haskellsecp256k1_v0_1_0_scalar *sigs, const haskellsecp256k1_v0_1_0_ge *pubkey, const haskellsecp256k1_v0_1_0_scalar *message) {
    196     unsigned char c[32];
    197     haskellsecp256k1_v0_1_0_scalar sn, u1, u2;
    198 #if !defined(EXHAUSTIVE_TEST_ORDER)
    199     haskellsecp256k1_v0_1_0_fe xr;
    200 #endif
    201     haskellsecp256k1_v0_1_0_gej pubkeyj;
    202     haskellsecp256k1_v0_1_0_gej pr;
    203 
    204     if (haskellsecp256k1_v0_1_0_scalar_is_zero(sigr) || haskellsecp256k1_v0_1_0_scalar_is_zero(sigs)) {
    205         return 0;
    206     }
    207 
    208     haskellsecp256k1_v0_1_0_scalar_inverse_var(&sn, sigs);
    209     haskellsecp256k1_v0_1_0_scalar_mul(&u1, &sn, message);
    210     haskellsecp256k1_v0_1_0_scalar_mul(&u2, &sn, sigr);
    211     haskellsecp256k1_v0_1_0_gej_set_ge(&pubkeyj, pubkey);
    212     haskellsecp256k1_v0_1_0_ecmult(&pr, &pubkeyj, &u2, &u1);
    213     if (haskellsecp256k1_v0_1_0_gej_is_infinity(&pr)) {
    214         return 0;
    215     }
    216 
    217 #if defined(EXHAUSTIVE_TEST_ORDER)
    218 {
    219     haskellsecp256k1_v0_1_0_scalar computed_r;
    220     haskellsecp256k1_v0_1_0_ge pr_ge;
    221     haskellsecp256k1_v0_1_0_ge_set_gej(&pr_ge, &pr);
    222     haskellsecp256k1_v0_1_0_fe_normalize(&pr_ge.x);
    223 
    224     haskellsecp256k1_v0_1_0_fe_get_b32(c, &pr_ge.x);
    225     haskellsecp256k1_v0_1_0_scalar_set_b32(&computed_r, c, NULL);
    226     return haskellsecp256k1_v0_1_0_scalar_eq(sigr, &computed_r);
    227 }
    228 #else
    229     haskellsecp256k1_v0_1_0_scalar_get_b32(c, sigr);
    230     /* we can ignore the fe_set_b32_limit return value, because we know the input is in range */
    231     (void)haskellsecp256k1_v0_1_0_fe_set_b32_limit(&xr, c);
    232 
    233     /** We now have the recomputed R point in pr, and its claimed x coordinate (modulo n)
    234      *  in xr. Naively, we would extract the x coordinate from pr (requiring a inversion modulo p),
    235      *  compute the remainder modulo n, and compare it to xr. However:
    236      *
    237      *        xr == X(pr) mod n
    238      *    <=> exists h. (xr + h * n < p && xr + h * n == X(pr))
    239      *    [Since 2 * n > p, h can only be 0 or 1]
    240      *    <=> (xr == X(pr)) || (xr + n < p && xr + n == X(pr))
    241      *    [In Jacobian coordinates, X(pr) is pr.x / pr.z^2 mod p]
    242      *    <=> (xr == pr.x / pr.z^2 mod p) || (xr + n < p && xr + n == pr.x / pr.z^2 mod p)
    243      *    [Multiplying both sides of the equations by pr.z^2 mod p]
    244      *    <=> (xr * pr.z^2 mod p == pr.x) || (xr + n < p && (xr + n) * pr.z^2 mod p == pr.x)
    245      *
    246      *  Thus, we can avoid the inversion, but we have to check both cases separately.
    247      *  haskellsecp256k1_v0_1_0_gej_eq_x implements the (xr * pr.z^2 mod p == pr.x) test.
    248      */
    249     if (haskellsecp256k1_v0_1_0_gej_eq_x_var(&xr, &pr)) {
    250         /* xr * pr.z^2 mod p == pr.x, so the signature is valid. */
    251         return 1;
    252     }
    253     if (haskellsecp256k1_v0_1_0_fe_cmp_var(&xr, &haskellsecp256k1_v0_1_0_ecdsa_const_p_minus_order) >= 0) {
    254         /* xr + n >= p, so we can skip testing the second case. */
    255         return 0;
    256     }
    257     haskellsecp256k1_v0_1_0_fe_add(&xr, &haskellsecp256k1_v0_1_0_ecdsa_const_order_as_fe);
    258     if (haskellsecp256k1_v0_1_0_gej_eq_x_var(&xr, &pr)) {
    259         /* (xr + n) * pr.z^2 mod p == pr.x, so the signature is valid. */
    260         return 1;
    261     }
    262     return 0;
    263 #endif
    264 }
    265 
    266 static int haskellsecp256k1_v0_1_0_ecdsa_sig_sign(const haskellsecp256k1_v0_1_0_ecmult_gen_context *ctx, haskellsecp256k1_v0_1_0_scalar *sigr, haskellsecp256k1_v0_1_0_scalar *sigs, const haskellsecp256k1_v0_1_0_scalar *seckey, const haskellsecp256k1_v0_1_0_scalar *message, const haskellsecp256k1_v0_1_0_scalar *nonce, int *recid) {
    267     unsigned char b[32];
    268     haskellsecp256k1_v0_1_0_gej rp;
    269     haskellsecp256k1_v0_1_0_ge r;
    270     haskellsecp256k1_v0_1_0_scalar n;
    271     int overflow = 0;
    272     int high;
    273 
    274     haskellsecp256k1_v0_1_0_ecmult_gen(ctx, &rp, nonce);
    275     haskellsecp256k1_v0_1_0_ge_set_gej(&r, &rp);
    276     haskellsecp256k1_v0_1_0_fe_normalize(&r.x);
    277     haskellsecp256k1_v0_1_0_fe_normalize(&r.y);
    278     haskellsecp256k1_v0_1_0_fe_get_b32(b, &r.x);
    279     haskellsecp256k1_v0_1_0_scalar_set_b32(sigr, b, &overflow);
    280     if (recid) {
    281         /* The overflow condition is cryptographically unreachable as hitting it requires finding the discrete log
    282          * of some P where P.x >= order, and only 1 in about 2^127 points meet this criteria.
    283          */
    284         *recid = (overflow << 1) | haskellsecp256k1_v0_1_0_fe_is_odd(&r.y);
    285     }
    286     haskellsecp256k1_v0_1_0_scalar_mul(&n, sigr, seckey);
    287     haskellsecp256k1_v0_1_0_scalar_add(&n, &n, message);
    288     haskellsecp256k1_v0_1_0_scalar_inverse(sigs, nonce);
    289     haskellsecp256k1_v0_1_0_scalar_mul(sigs, sigs, &n);
    290     haskellsecp256k1_v0_1_0_scalar_clear(&n);
    291     haskellsecp256k1_v0_1_0_gej_clear(&rp);
    292     haskellsecp256k1_v0_1_0_ge_clear(&r);
    293     high = haskellsecp256k1_v0_1_0_scalar_is_high(sigs);
    294     haskellsecp256k1_v0_1_0_scalar_cond_negate(sigs, high);
    295     if (recid) {
    296         *recid ^= high;
    297     }
    298     /* P.x = order is on the curve, so technically sig->r could end up being zero, which would be an invalid signature.
    299      * This is cryptographically unreachable as hitting it requires finding the discrete log of P.x = N.
    300      */
    301     return (int)(!haskellsecp256k1_v0_1_0_scalar_is_zero(sigr)) & (int)(!haskellsecp256k1_v0_1_0_scalar_is_zero(sigs));
    302 }
    303 
    304 #endif /* SECP256K1_ECDSA_IMPL_H */