csecp256k1

Haskell FFI bindings to bitcoin-core/secp256k1 (docs.ppad.tech/csecp256k1).
git clone git://git.ppad.tech/csecp256k1.git
Log | Files | Refs | README | LICENSE

modinv64_impl.h (41471B)


      1 /***********************************************************************
      2  * Copyright (c) 2020 Peter Dettman                                    *
      3  * Distributed under the MIT software license, see the accompanying    *
      4  * file COPYING or https://www.opensource.org/licenses/mit-license.php.*
      5  **********************************************************************/
      6 
      7 #ifndef SECP256K1_MODINV64_IMPL_H
      8 #define SECP256K1_MODINV64_IMPL_H
      9 
     10 #include "int128.h"
     11 #include "modinv64.h"
     12 
     13 /* This file implements modular inversion based on the paper "Fast constant-time gcd computation and
     14  * modular inversion" by Daniel J. Bernstein and Bo-Yin Yang.
     15  *
     16  * For an explanation of the algorithm, see doc/safegcd_implementation.md. This file contains an
     17  * implementation for N=62, using 62-bit signed limbs represented as int64_t.
     18  */
     19 
     20 /* Data type for transition matrices (see section 3 of explanation).
     21  *
     22  * t = [ u  v ]
     23  *     [ q  r ]
     24  */
     25 typedef struct {
     26     int64_t u, v, q, r;
     27 } haskellsecp256k1_v0_1_0_modinv64_trans2x2;
     28 
     29 #ifdef VERIFY
     30 /* Helper function to compute the absolute value of an int64_t.
     31  * (we don't use abs/labs/llabs as it depends on the int sizes). */
     32 static int64_t haskellsecp256k1_v0_1_0_modinv64_abs(int64_t v) {
     33     VERIFY_CHECK(v > INT64_MIN);
     34     if (v < 0) return -v;
     35     return v;
     36 }
     37 
     38 static const haskellsecp256k1_v0_1_0_modinv64_signed62 SECP256K1_SIGNED62_ONE = {{1}};
     39 
     40 /* Compute a*factor and put it in r. All but the top limb in r will be in range [0,2^62). */
     41 static void haskellsecp256k1_v0_1_0_modinv64_mul_62(haskellsecp256k1_v0_1_0_modinv64_signed62 *r, const haskellsecp256k1_v0_1_0_modinv64_signed62 *a, int alen, int64_t factor) {
     42     const uint64_t M62 = UINT64_MAX >> 2;
     43     haskellsecp256k1_v0_1_0_int128 c, d;
     44     int i;
     45     haskellsecp256k1_v0_1_0_i128_from_i64(&c, 0);
     46     for (i = 0; i < 4; ++i) {
     47         if (i < alen) haskellsecp256k1_v0_1_0_i128_accum_mul(&c, a->v[i], factor);
     48         r->v[i] = haskellsecp256k1_v0_1_0_i128_to_u64(&c) & M62; haskellsecp256k1_v0_1_0_i128_rshift(&c, 62);
     49     }
     50     if (4 < alen) haskellsecp256k1_v0_1_0_i128_accum_mul(&c, a->v[4], factor);
     51     haskellsecp256k1_v0_1_0_i128_from_i64(&d, haskellsecp256k1_v0_1_0_i128_to_i64(&c));
     52     VERIFY_CHECK(haskellsecp256k1_v0_1_0_i128_eq_var(&c, &d));
     53     r->v[4] = haskellsecp256k1_v0_1_0_i128_to_i64(&c);
     54 }
     55 
     56 /* Return -1 for a<b*factor, 0 for a==b*factor, 1 for a>b*factor. A has alen limbs; b has 5. */
     57 static int haskellsecp256k1_v0_1_0_modinv64_mul_cmp_62(const haskellsecp256k1_v0_1_0_modinv64_signed62 *a, int alen, const haskellsecp256k1_v0_1_0_modinv64_signed62 *b, int64_t factor) {
     58     int i;
     59     haskellsecp256k1_v0_1_0_modinv64_signed62 am, bm;
     60     haskellsecp256k1_v0_1_0_modinv64_mul_62(&am, a, alen, 1); /* Normalize all but the top limb of a. */
     61     haskellsecp256k1_v0_1_0_modinv64_mul_62(&bm, b, 5, factor);
     62     for (i = 0; i < 4; ++i) {
     63         /* Verify that all but the top limb of a and b are normalized. */
     64         VERIFY_CHECK(am.v[i] >> 62 == 0);
     65         VERIFY_CHECK(bm.v[i] >> 62 == 0);
     66     }
     67     for (i = 4; i >= 0; --i) {
     68         if (am.v[i] < bm.v[i]) return -1;
     69         if (am.v[i] > bm.v[i]) return 1;
     70     }
     71     return 0;
     72 }
     73 
     74 /* Check if the determinant of t is equal to 1 << n. If abs, check if |det t| == 1 << n. */
     75 static int haskellsecp256k1_v0_1_0_modinv64_det_check_pow2(const haskellsecp256k1_v0_1_0_modinv64_trans2x2 *t, unsigned int n, int abs) {
     76     haskellsecp256k1_v0_1_0_int128 a;
     77     haskellsecp256k1_v0_1_0_i128_det(&a, t->u, t->v, t->q, t->r);
     78     if (haskellsecp256k1_v0_1_0_i128_check_pow2(&a, n, 1)) return 1;
     79     if (abs && haskellsecp256k1_v0_1_0_i128_check_pow2(&a, n, -1)) return 1;
     80     return 0;
     81 }
     82 #endif
     83 
     84 /* Take as input a signed62 number in range (-2*modulus,modulus), and add a multiple of the modulus
     85  * to it to bring it to range [0,modulus). If sign < 0, the input will also be negated in the
     86  * process. The input must have limbs in range (-2^62,2^62). The output will have limbs in range
     87  * [0,2^62). */
     88 static void haskellsecp256k1_v0_1_0_modinv64_normalize_62(haskellsecp256k1_v0_1_0_modinv64_signed62 *r, int64_t sign, const haskellsecp256k1_v0_1_0_modinv64_modinfo *modinfo) {
     89     const int64_t M62 = (int64_t)(UINT64_MAX >> 2);
     90     int64_t r0 = r->v[0], r1 = r->v[1], r2 = r->v[2], r3 = r->v[3], r4 = r->v[4];
     91     volatile int64_t cond_add, cond_negate;
     92 
     93 #ifdef VERIFY
     94     /* Verify that all limbs are in range (-2^62,2^62). */
     95     int i;
     96     for (i = 0; i < 5; ++i) {
     97         VERIFY_CHECK(r->v[i] >= -M62);
     98         VERIFY_CHECK(r->v[i] <= M62);
     99     }
    100     VERIFY_CHECK(haskellsecp256k1_v0_1_0_modinv64_mul_cmp_62(r, 5, &modinfo->modulus, -2) > 0); /* r > -2*modulus */
    101     VERIFY_CHECK(haskellsecp256k1_v0_1_0_modinv64_mul_cmp_62(r, 5, &modinfo->modulus, 1) < 0); /* r < modulus */
    102 #endif
    103 
    104     /* In a first step, add the modulus if the input is negative, and then negate if requested.
    105      * This brings r from range (-2*modulus,modulus) to range (-modulus,modulus). As all input
    106      * limbs are in range (-2^62,2^62), this cannot overflow an int64_t. Note that the right
    107      * shifts below are signed sign-extending shifts (see assumptions.h for tests that that is
    108      * indeed the behavior of the right shift operator). */
    109     cond_add = r4 >> 63;
    110     r0 += modinfo->modulus.v[0] & cond_add;
    111     r1 += modinfo->modulus.v[1] & cond_add;
    112     r2 += modinfo->modulus.v[2] & cond_add;
    113     r3 += modinfo->modulus.v[3] & cond_add;
    114     r4 += modinfo->modulus.v[4] & cond_add;
    115     cond_negate = sign >> 63;
    116     r0 = (r0 ^ cond_negate) - cond_negate;
    117     r1 = (r1 ^ cond_negate) - cond_negate;
    118     r2 = (r2 ^ cond_negate) - cond_negate;
    119     r3 = (r3 ^ cond_negate) - cond_negate;
    120     r4 = (r4 ^ cond_negate) - cond_negate;
    121     /* Propagate the top bits, to bring limbs back to range (-2^62,2^62). */
    122     r1 += r0 >> 62; r0 &= M62;
    123     r2 += r1 >> 62; r1 &= M62;
    124     r3 += r2 >> 62; r2 &= M62;
    125     r4 += r3 >> 62; r3 &= M62;
    126 
    127     /* In a second step add the modulus again if the result is still negative, bringing
    128      * r to range [0,modulus). */
    129     cond_add = r4 >> 63;
    130     r0 += modinfo->modulus.v[0] & cond_add;
    131     r1 += modinfo->modulus.v[1] & cond_add;
    132     r2 += modinfo->modulus.v[2] & cond_add;
    133     r3 += modinfo->modulus.v[3] & cond_add;
    134     r4 += modinfo->modulus.v[4] & cond_add;
    135     /* And propagate again. */
    136     r1 += r0 >> 62; r0 &= M62;
    137     r2 += r1 >> 62; r1 &= M62;
    138     r3 += r2 >> 62; r2 &= M62;
    139     r4 += r3 >> 62; r3 &= M62;
    140 
    141     r->v[0] = r0;
    142     r->v[1] = r1;
    143     r->v[2] = r2;
    144     r->v[3] = r3;
    145     r->v[4] = r4;
    146 
    147     VERIFY_CHECK(r0 >> 62 == 0);
    148     VERIFY_CHECK(r1 >> 62 == 0);
    149     VERIFY_CHECK(r2 >> 62 == 0);
    150     VERIFY_CHECK(r3 >> 62 == 0);
    151     VERIFY_CHECK(r4 >> 62 == 0);
    152     VERIFY_CHECK(haskellsecp256k1_v0_1_0_modinv64_mul_cmp_62(r, 5, &modinfo->modulus, 0) >= 0); /* r >= 0 */
    153     VERIFY_CHECK(haskellsecp256k1_v0_1_0_modinv64_mul_cmp_62(r, 5, &modinfo->modulus, 1) < 0); /* r < modulus */
    154 }
    155 
    156 /* Compute the transition matrix and eta for 59 divsteps (where zeta=-(delta+1/2)).
    157  * Note that the transformation matrix is scaled by 2^62 and not 2^59.
    158  *
    159  * Input:  zeta: initial zeta
    160  *         f0:   bottom limb of initial f
    161  *         g0:   bottom limb of initial g
    162  * Output: t: transition matrix
    163  * Return: final zeta
    164  *
    165  * Implements the divsteps_n_matrix function from the explanation.
    166  */
    167 static int64_t haskellsecp256k1_v0_1_0_modinv64_divsteps_59(int64_t zeta, uint64_t f0, uint64_t g0, haskellsecp256k1_v0_1_0_modinv64_trans2x2 *t) {
    168     /* u,v,q,r are the elements of the transformation matrix being built up,
    169      * starting with the identity matrix times 8 (because the caller expects
    170      * a result scaled by 2^62). Semantically they are signed integers
    171      * in range [-2^62,2^62], but here represented as unsigned mod 2^64. This
    172      * permits left shifting (which is UB for negative numbers). The range
    173      * being inside [-2^63,2^63) means that casting to signed works correctly.
    174      */
    175     uint64_t u = 8, v = 0, q = 0, r = 8;
    176     volatile uint64_t c1, c2;
    177     uint64_t mask1, mask2, f = f0, g = g0, x, y, z;
    178     int i;
    179 
    180     for (i = 3; i < 62; ++i) {
    181         VERIFY_CHECK((f & 1) == 1); /* f must always be odd */
    182         VERIFY_CHECK((u * f0 + v * g0) == f << i);
    183         VERIFY_CHECK((q * f0 + r * g0) == g << i);
    184         /* Compute conditional masks for (zeta < 0) and for (g & 1). */
    185         c1 = zeta >> 63;
    186         mask1 = c1;
    187         c2 = g & 1;
    188         mask2 = -c2;
    189         /* Compute x,y,z, conditionally negated versions of f,u,v. */
    190         x = (f ^ mask1) - mask1;
    191         y = (u ^ mask1) - mask1;
    192         z = (v ^ mask1) - mask1;
    193         /* Conditionally add x,y,z to g,q,r. */
    194         g += x & mask2;
    195         q += y & mask2;
    196         r += z & mask2;
    197         /* In what follows, c1 is a condition mask for (zeta < 0) and (g & 1). */
    198         mask1 &= mask2;
    199         /* Conditionally change zeta into -zeta-2 or zeta-1. */
    200         zeta = (zeta ^ mask1) - 1;
    201         /* Conditionally add g,q,r to f,u,v. */
    202         f += g & mask1;
    203         u += q & mask1;
    204         v += r & mask1;
    205         /* Shifts */
    206         g >>= 1;
    207         u <<= 1;
    208         v <<= 1;
    209         /* Bounds on zeta that follow from the bounds on iteration count (max 10*59 divsteps). */
    210         VERIFY_CHECK(zeta >= -591 && zeta <= 591);
    211     }
    212     /* Return data in t and return value. */
    213     t->u = (int64_t)u;
    214     t->v = (int64_t)v;
    215     t->q = (int64_t)q;
    216     t->r = (int64_t)r;
    217 
    218     /* The determinant of t must be a power of two. This guarantees that multiplication with t
    219      * does not change the gcd of f and g, apart from adding a power-of-2 factor to it (which
    220      * will be divided out again). As each divstep's individual matrix has determinant 2, the
    221      * aggregate of 59 of them will have determinant 2^59. Multiplying with the initial
    222      * 8*identity (which has determinant 2^6) means the overall outputs has determinant
    223      * 2^65. */
    224     VERIFY_CHECK(haskellsecp256k1_v0_1_0_modinv64_det_check_pow2(t, 65, 0));
    225 
    226     return zeta;
    227 }
    228 
    229 /* Compute the transition matrix and eta for 62 divsteps (variable time, eta=-delta).
    230  *
    231  * Input:  eta: initial eta
    232  *         f0:  bottom limb of initial f
    233  *         g0:  bottom limb of initial g
    234  * Output: t: transition matrix
    235  * Return: final eta
    236  *
    237  * Implements the divsteps_n_matrix_var function from the explanation.
    238  */
    239 static int64_t haskellsecp256k1_v0_1_0_modinv64_divsteps_62_var(int64_t eta, uint64_t f0, uint64_t g0, haskellsecp256k1_v0_1_0_modinv64_trans2x2 *t) {
    240     /* Transformation matrix; see comments in haskellsecp256k1_v0_1_0_modinv64_divsteps_62. */
    241     uint64_t u = 1, v = 0, q = 0, r = 1;
    242     uint64_t f = f0, g = g0, m;
    243     uint32_t w;
    244     int i = 62, limit, zeros;
    245 
    246     for (;;) {
    247         /* Use a sentinel bit to count zeros only up to i. */
    248         zeros = haskellsecp256k1_v0_1_0_ctz64_var(g | (UINT64_MAX << i));
    249         /* Perform zeros divsteps at once; they all just divide g by two. */
    250         g >>= zeros;
    251         u <<= zeros;
    252         v <<= zeros;
    253         eta -= zeros;
    254         i -= zeros;
    255         /* We're done once we've done 62 divsteps. */
    256         if (i == 0) break;
    257         VERIFY_CHECK((f & 1) == 1);
    258         VERIFY_CHECK((g & 1) == 1);
    259         VERIFY_CHECK((u * f0 + v * g0) == f << (62 - i));
    260         VERIFY_CHECK((q * f0 + r * g0) == g << (62 - i));
    261         /* Bounds on eta that follow from the bounds on iteration count (max 12*62 divsteps). */
    262         VERIFY_CHECK(eta >= -745 && eta <= 745);
    263         /* If eta is negative, negate it and replace f,g with g,-f. */
    264         if (eta < 0) {
    265             uint64_t tmp;
    266             eta = -eta;
    267             tmp = f; f = g; g = -tmp;
    268             tmp = u; u = q; q = -tmp;
    269             tmp = v; v = r; r = -tmp;
    270             /* Use a formula to cancel out up to 6 bits of g. Also, no more than i can be cancelled
    271              * out (as we'd be done before that point), and no more than eta+1 can be done as its
    272              * sign will flip again once that happens. */
    273             limit = ((int)eta + 1) > i ? i : ((int)eta + 1);
    274             VERIFY_CHECK(limit > 0 && limit <= 62);
    275             /* m is a mask for the bottom min(limit, 6) bits. */
    276             m = (UINT64_MAX >> (64 - limit)) & 63U;
    277             /* Find what multiple of f must be added to g to cancel its bottom min(limit, 6)
    278              * bits. */
    279             w = (f * g * (f * f - 2)) & m;
    280         } else {
    281             /* In this branch, use a simpler formula that only lets us cancel up to 4 bits of g, as
    282              * eta tends to be smaller here. */
    283             limit = ((int)eta + 1) > i ? i : ((int)eta + 1);
    284             VERIFY_CHECK(limit > 0 && limit <= 62);
    285             /* m is a mask for the bottom min(limit, 4) bits. */
    286             m = (UINT64_MAX >> (64 - limit)) & 15U;
    287             /* Find what multiple of f must be added to g to cancel its bottom min(limit, 4)
    288              * bits. */
    289             w = f + (((f + 1) & 4) << 1);
    290             w = (-w * g) & m;
    291         }
    292         g += f * w;
    293         q += u * w;
    294         r += v * w;
    295         VERIFY_CHECK((g & m) == 0);
    296     }
    297     /* Return data in t and return value. */
    298     t->u = (int64_t)u;
    299     t->v = (int64_t)v;
    300     t->q = (int64_t)q;
    301     t->r = (int64_t)r;
    302 
    303     /* The determinant of t must be a power of two. This guarantees that multiplication with t
    304      * does not change the gcd of f and g, apart from adding a power-of-2 factor to it (which
    305      * will be divided out again). As each divstep's individual matrix has determinant 2, the
    306      * aggregate of 62 of them will have determinant 2^62. */
    307     VERIFY_CHECK(haskellsecp256k1_v0_1_0_modinv64_det_check_pow2(t, 62, 0));
    308 
    309     return eta;
    310 }
    311 
    312 /* Compute the transition matrix and eta for 62 posdivsteps (variable time, eta=-delta), and keeps track
    313  * of the Jacobi symbol along the way. f0 and g0 must be f and g mod 2^64 rather than 2^62, because
    314  * Jacobi tracking requires knowing (f mod 8) rather than just (f mod 2).
    315  *
    316  * Input:        eta: initial eta
    317  *               f0:  bottom limb of initial f
    318  *               g0:  bottom limb of initial g
    319  * Output:       t: transition matrix
    320  * Input/Output: (*jacp & 1) is bitflipped if and only if the Jacobi symbol of (f | g) changes sign
    321  *               by applying the returned transformation matrix to it. The other bits of *jacp may
    322  *               change, but are meaningless.
    323  * Return:       final eta
    324  */
    325 static int64_t haskellsecp256k1_v0_1_0_modinv64_posdivsteps_62_var(int64_t eta, uint64_t f0, uint64_t g0, haskellsecp256k1_v0_1_0_modinv64_trans2x2 *t, int *jacp) {
    326     /* Transformation matrix; see comments in haskellsecp256k1_v0_1_0_modinv64_divsteps_62. */
    327     uint64_t u = 1, v = 0, q = 0, r = 1;
    328     uint64_t f = f0, g = g0, m;
    329     uint32_t w;
    330     int i = 62, limit, zeros;
    331     int jac = *jacp;
    332 
    333     for (;;) {
    334         /* Use a sentinel bit to count zeros only up to i. */
    335         zeros = haskellsecp256k1_v0_1_0_ctz64_var(g | (UINT64_MAX << i));
    336         /* Perform zeros divsteps at once; they all just divide g by two. */
    337         g >>= zeros;
    338         u <<= zeros;
    339         v <<= zeros;
    340         eta -= zeros;
    341         i -= zeros;
    342         /* Update the bottom bit of jac: when dividing g by an odd power of 2,
    343          * if (f mod 8) is 3 or 5, the Jacobi symbol changes sign. */
    344         jac ^= (zeros & ((f >> 1) ^ (f >> 2)));
    345         /* We're done once we've done 62 posdivsteps. */
    346         if (i == 0) break;
    347         VERIFY_CHECK((f & 1) == 1);
    348         VERIFY_CHECK((g & 1) == 1);
    349         VERIFY_CHECK((u * f0 + v * g0) == f << (62 - i));
    350         VERIFY_CHECK((q * f0 + r * g0) == g << (62 - i));
    351         /* If eta is negative, negate it and replace f,g with g,f. */
    352         if (eta < 0) {
    353             uint64_t tmp;
    354             eta = -eta;
    355             tmp = f; f = g; g = tmp;
    356             tmp = u; u = q; q = tmp;
    357             tmp = v; v = r; r = tmp;
    358             /* Update bottom bit of jac: when swapping f and g, the Jacobi symbol changes sign
    359              * if both f and g are 3 mod 4. */
    360             jac ^= ((f & g) >> 1);
    361             /* Use a formula to cancel out up to 6 bits of g. Also, no more than i can be cancelled
    362              * out (as we'd be done before that point), and no more than eta+1 can be done as its
    363              * sign will flip again once that happens. */
    364             limit = ((int)eta + 1) > i ? i : ((int)eta + 1);
    365             VERIFY_CHECK(limit > 0 && limit <= 62);
    366             /* m is a mask for the bottom min(limit, 6) bits. */
    367             m = (UINT64_MAX >> (64 - limit)) & 63U;
    368             /* Find what multiple of f must be added to g to cancel its bottom min(limit, 6)
    369              * bits. */
    370             w = (f * g * (f * f - 2)) & m;
    371         } else {
    372             /* In this branch, use a simpler formula that only lets us cancel up to 4 bits of g, as
    373              * eta tends to be smaller here. */
    374             limit = ((int)eta + 1) > i ? i : ((int)eta + 1);
    375             VERIFY_CHECK(limit > 0 && limit <= 62);
    376             /* m is a mask for the bottom min(limit, 4) bits. */
    377             m = (UINT64_MAX >> (64 - limit)) & 15U;
    378             /* Find what multiple of f must be added to g to cancel its bottom min(limit, 4)
    379              * bits. */
    380             w = f + (((f + 1) & 4) << 1);
    381             w = (-w * g) & m;
    382         }
    383         g += f * w;
    384         q += u * w;
    385         r += v * w;
    386         VERIFY_CHECK((g & m) == 0);
    387     }
    388     /* Return data in t and return value. */
    389     t->u = (int64_t)u;
    390     t->v = (int64_t)v;
    391     t->q = (int64_t)q;
    392     t->r = (int64_t)r;
    393 
    394     /* The determinant of t must be a power of two. This guarantees that multiplication with t
    395      * does not change the gcd of f and g, apart from adding a power-of-2 factor to it (which
    396      * will be divided out again). As each divstep's individual matrix has determinant 2 or -2,
    397      * the aggregate of 62 of them will have determinant 2^62 or -2^62. */
    398     VERIFY_CHECK(haskellsecp256k1_v0_1_0_modinv64_det_check_pow2(t, 62, 1));
    399 
    400     *jacp = jac;
    401     return eta;
    402 }
    403 
    404 /* Compute (t/2^62) * [d, e] mod modulus, where t is a transition matrix scaled by 2^62.
    405  *
    406  * On input and output, d and e are in range (-2*modulus,modulus). All output limbs will be in range
    407  * (-2^62,2^62).
    408  *
    409  * This implements the update_de function from the explanation.
    410  */
    411 static void haskellsecp256k1_v0_1_0_modinv64_update_de_62(haskellsecp256k1_v0_1_0_modinv64_signed62 *d, haskellsecp256k1_v0_1_0_modinv64_signed62 *e, const haskellsecp256k1_v0_1_0_modinv64_trans2x2 *t, const haskellsecp256k1_v0_1_0_modinv64_modinfo* modinfo) {
    412     const uint64_t M62 = UINT64_MAX >> 2;
    413     const int64_t d0 = d->v[0], d1 = d->v[1], d2 = d->v[2], d3 = d->v[3], d4 = d->v[4];
    414     const int64_t e0 = e->v[0], e1 = e->v[1], e2 = e->v[2], e3 = e->v[3], e4 = e->v[4];
    415     const int64_t u = t->u, v = t->v, q = t->q, r = t->r;
    416     int64_t md, me, sd, se;
    417     haskellsecp256k1_v0_1_0_int128 cd, ce;
    418     VERIFY_CHECK(haskellsecp256k1_v0_1_0_modinv64_mul_cmp_62(d, 5, &modinfo->modulus, -2) > 0); /* d > -2*modulus */
    419     VERIFY_CHECK(haskellsecp256k1_v0_1_0_modinv64_mul_cmp_62(d, 5, &modinfo->modulus, 1) < 0);  /* d <    modulus */
    420     VERIFY_CHECK(haskellsecp256k1_v0_1_0_modinv64_mul_cmp_62(e, 5, &modinfo->modulus, -2) > 0); /* e > -2*modulus */
    421     VERIFY_CHECK(haskellsecp256k1_v0_1_0_modinv64_mul_cmp_62(e, 5, &modinfo->modulus, 1) < 0);  /* e <    modulus */
    422     VERIFY_CHECK(haskellsecp256k1_v0_1_0_modinv64_abs(u) <= (((int64_t)1 << 62) - haskellsecp256k1_v0_1_0_modinv64_abs(v))); /* |u|+|v| <= 2^62 */
    423     VERIFY_CHECK(haskellsecp256k1_v0_1_0_modinv64_abs(q) <= (((int64_t)1 << 62) - haskellsecp256k1_v0_1_0_modinv64_abs(r))); /* |q|+|r| <= 2^62 */
    424 
    425     /* [md,me] start as zero; plus [u,q] if d is negative; plus [v,r] if e is negative. */
    426     sd = d4 >> 63;
    427     se = e4 >> 63;
    428     md = (u & sd) + (v & se);
    429     me = (q & sd) + (r & se);
    430     /* Begin computing t*[d,e]. */
    431     haskellsecp256k1_v0_1_0_i128_mul(&cd, u, d0);
    432     haskellsecp256k1_v0_1_0_i128_accum_mul(&cd, v, e0);
    433     haskellsecp256k1_v0_1_0_i128_mul(&ce, q, d0);
    434     haskellsecp256k1_v0_1_0_i128_accum_mul(&ce, r, e0);
    435     /* Correct md,me so that t*[d,e]+modulus*[md,me] has 62 zero bottom bits. */
    436     md -= (modinfo->modulus_inv62 * haskellsecp256k1_v0_1_0_i128_to_u64(&cd) + md) & M62;
    437     me -= (modinfo->modulus_inv62 * haskellsecp256k1_v0_1_0_i128_to_u64(&ce) + me) & M62;
    438     /* Update the beginning of computation for t*[d,e]+modulus*[md,me] now md,me are known. */
    439     haskellsecp256k1_v0_1_0_i128_accum_mul(&cd, modinfo->modulus.v[0], md);
    440     haskellsecp256k1_v0_1_0_i128_accum_mul(&ce, modinfo->modulus.v[0], me);
    441     /* Verify that the low 62 bits of the computation are indeed zero, and then throw them away. */
    442     VERIFY_CHECK((haskellsecp256k1_v0_1_0_i128_to_u64(&cd) & M62) == 0); haskellsecp256k1_v0_1_0_i128_rshift(&cd, 62);
    443     VERIFY_CHECK((haskellsecp256k1_v0_1_0_i128_to_u64(&ce) & M62) == 0); haskellsecp256k1_v0_1_0_i128_rshift(&ce, 62);
    444     /* Compute limb 1 of t*[d,e]+modulus*[md,me], and store it as output limb 0 (= down shift). */
    445     haskellsecp256k1_v0_1_0_i128_accum_mul(&cd, u, d1);
    446     haskellsecp256k1_v0_1_0_i128_accum_mul(&cd, v, e1);
    447     haskellsecp256k1_v0_1_0_i128_accum_mul(&ce, q, d1);
    448     haskellsecp256k1_v0_1_0_i128_accum_mul(&ce, r, e1);
    449     if (modinfo->modulus.v[1]) { /* Optimize for the case where limb of modulus is zero. */
    450         haskellsecp256k1_v0_1_0_i128_accum_mul(&cd, modinfo->modulus.v[1], md);
    451         haskellsecp256k1_v0_1_0_i128_accum_mul(&ce, modinfo->modulus.v[1], me);
    452     }
    453     d->v[0] = haskellsecp256k1_v0_1_0_i128_to_u64(&cd) & M62; haskellsecp256k1_v0_1_0_i128_rshift(&cd, 62);
    454     e->v[0] = haskellsecp256k1_v0_1_0_i128_to_u64(&ce) & M62; haskellsecp256k1_v0_1_0_i128_rshift(&ce, 62);
    455     /* Compute limb 2 of t*[d,e]+modulus*[md,me], and store it as output limb 1. */
    456     haskellsecp256k1_v0_1_0_i128_accum_mul(&cd, u, d2);
    457     haskellsecp256k1_v0_1_0_i128_accum_mul(&cd, v, e2);
    458     haskellsecp256k1_v0_1_0_i128_accum_mul(&ce, q, d2);
    459     haskellsecp256k1_v0_1_0_i128_accum_mul(&ce, r, e2);
    460     if (modinfo->modulus.v[2]) { /* Optimize for the case where limb of modulus is zero. */
    461         haskellsecp256k1_v0_1_0_i128_accum_mul(&cd, modinfo->modulus.v[2], md);
    462         haskellsecp256k1_v0_1_0_i128_accum_mul(&ce, modinfo->modulus.v[2], me);
    463     }
    464     d->v[1] = haskellsecp256k1_v0_1_0_i128_to_u64(&cd) & M62; haskellsecp256k1_v0_1_0_i128_rshift(&cd, 62);
    465     e->v[1] = haskellsecp256k1_v0_1_0_i128_to_u64(&ce) & M62; haskellsecp256k1_v0_1_0_i128_rshift(&ce, 62);
    466     /* Compute limb 3 of t*[d,e]+modulus*[md,me], and store it as output limb 2. */
    467     haskellsecp256k1_v0_1_0_i128_accum_mul(&cd, u, d3);
    468     haskellsecp256k1_v0_1_0_i128_accum_mul(&cd, v, e3);
    469     haskellsecp256k1_v0_1_0_i128_accum_mul(&ce, q, d3);
    470     haskellsecp256k1_v0_1_0_i128_accum_mul(&ce, r, e3);
    471     if (modinfo->modulus.v[3]) { /* Optimize for the case where limb of modulus is zero. */
    472         haskellsecp256k1_v0_1_0_i128_accum_mul(&cd, modinfo->modulus.v[3], md);
    473         haskellsecp256k1_v0_1_0_i128_accum_mul(&ce, modinfo->modulus.v[3], me);
    474     }
    475     d->v[2] = haskellsecp256k1_v0_1_0_i128_to_u64(&cd) & M62; haskellsecp256k1_v0_1_0_i128_rshift(&cd, 62);
    476     e->v[2] = haskellsecp256k1_v0_1_0_i128_to_u64(&ce) & M62; haskellsecp256k1_v0_1_0_i128_rshift(&ce, 62);
    477     /* Compute limb 4 of t*[d,e]+modulus*[md,me], and store it as output limb 3. */
    478     haskellsecp256k1_v0_1_0_i128_accum_mul(&cd, u, d4);
    479     haskellsecp256k1_v0_1_0_i128_accum_mul(&cd, v, e4);
    480     haskellsecp256k1_v0_1_0_i128_accum_mul(&ce, q, d4);
    481     haskellsecp256k1_v0_1_0_i128_accum_mul(&ce, r, e4);
    482     haskellsecp256k1_v0_1_0_i128_accum_mul(&cd, modinfo->modulus.v[4], md);
    483     haskellsecp256k1_v0_1_0_i128_accum_mul(&ce, modinfo->modulus.v[4], me);
    484     d->v[3] = haskellsecp256k1_v0_1_0_i128_to_u64(&cd) & M62; haskellsecp256k1_v0_1_0_i128_rshift(&cd, 62);
    485     e->v[3] = haskellsecp256k1_v0_1_0_i128_to_u64(&ce) & M62; haskellsecp256k1_v0_1_0_i128_rshift(&ce, 62);
    486     /* What remains is limb 5 of t*[d,e]+modulus*[md,me]; store it as output limb 4. */
    487     d->v[4] = haskellsecp256k1_v0_1_0_i128_to_i64(&cd);
    488     e->v[4] = haskellsecp256k1_v0_1_0_i128_to_i64(&ce);
    489 
    490     VERIFY_CHECK(haskellsecp256k1_v0_1_0_modinv64_mul_cmp_62(d, 5, &modinfo->modulus, -2) > 0); /* d > -2*modulus */
    491     VERIFY_CHECK(haskellsecp256k1_v0_1_0_modinv64_mul_cmp_62(d, 5, &modinfo->modulus, 1) < 0);  /* d <    modulus */
    492     VERIFY_CHECK(haskellsecp256k1_v0_1_0_modinv64_mul_cmp_62(e, 5, &modinfo->modulus, -2) > 0); /* e > -2*modulus */
    493     VERIFY_CHECK(haskellsecp256k1_v0_1_0_modinv64_mul_cmp_62(e, 5, &modinfo->modulus, 1) < 0);  /* e <    modulus */
    494 }
    495 
    496 /* Compute (t/2^62) * [f, g], where t is a transition matrix scaled by 2^62.
    497  *
    498  * This implements the update_fg function from the explanation.
    499  */
    500 static void haskellsecp256k1_v0_1_0_modinv64_update_fg_62(haskellsecp256k1_v0_1_0_modinv64_signed62 *f, haskellsecp256k1_v0_1_0_modinv64_signed62 *g, const haskellsecp256k1_v0_1_0_modinv64_trans2x2 *t) {
    501     const uint64_t M62 = UINT64_MAX >> 2;
    502     const int64_t f0 = f->v[0], f1 = f->v[1], f2 = f->v[2], f3 = f->v[3], f4 = f->v[4];
    503     const int64_t g0 = g->v[0], g1 = g->v[1], g2 = g->v[2], g3 = g->v[3], g4 = g->v[4];
    504     const int64_t u = t->u, v = t->v, q = t->q, r = t->r;
    505     haskellsecp256k1_v0_1_0_int128 cf, cg;
    506     /* Start computing t*[f,g]. */
    507     haskellsecp256k1_v0_1_0_i128_mul(&cf, u, f0);
    508     haskellsecp256k1_v0_1_0_i128_accum_mul(&cf, v, g0);
    509     haskellsecp256k1_v0_1_0_i128_mul(&cg, q, f0);
    510     haskellsecp256k1_v0_1_0_i128_accum_mul(&cg, r, g0);
    511     /* Verify that the bottom 62 bits of the result are zero, and then throw them away. */
    512     VERIFY_CHECK((haskellsecp256k1_v0_1_0_i128_to_u64(&cf) & M62) == 0); haskellsecp256k1_v0_1_0_i128_rshift(&cf, 62);
    513     VERIFY_CHECK((haskellsecp256k1_v0_1_0_i128_to_u64(&cg) & M62) == 0); haskellsecp256k1_v0_1_0_i128_rshift(&cg, 62);
    514     /* Compute limb 1 of t*[f,g], and store it as output limb 0 (= down shift). */
    515     haskellsecp256k1_v0_1_0_i128_accum_mul(&cf, u, f1);
    516     haskellsecp256k1_v0_1_0_i128_accum_mul(&cf, v, g1);
    517     haskellsecp256k1_v0_1_0_i128_accum_mul(&cg, q, f1);
    518     haskellsecp256k1_v0_1_0_i128_accum_mul(&cg, r, g1);
    519     f->v[0] = haskellsecp256k1_v0_1_0_i128_to_u64(&cf) & M62; haskellsecp256k1_v0_1_0_i128_rshift(&cf, 62);
    520     g->v[0] = haskellsecp256k1_v0_1_0_i128_to_u64(&cg) & M62; haskellsecp256k1_v0_1_0_i128_rshift(&cg, 62);
    521     /* Compute limb 2 of t*[f,g], and store it as output limb 1. */
    522     haskellsecp256k1_v0_1_0_i128_accum_mul(&cf, u, f2);
    523     haskellsecp256k1_v0_1_0_i128_accum_mul(&cf, v, g2);
    524     haskellsecp256k1_v0_1_0_i128_accum_mul(&cg, q, f2);
    525     haskellsecp256k1_v0_1_0_i128_accum_mul(&cg, r, g2);
    526     f->v[1] = haskellsecp256k1_v0_1_0_i128_to_u64(&cf) & M62; haskellsecp256k1_v0_1_0_i128_rshift(&cf, 62);
    527     g->v[1] = haskellsecp256k1_v0_1_0_i128_to_u64(&cg) & M62; haskellsecp256k1_v0_1_0_i128_rshift(&cg, 62);
    528     /* Compute limb 3 of t*[f,g], and store it as output limb 2. */
    529     haskellsecp256k1_v0_1_0_i128_accum_mul(&cf, u, f3);
    530     haskellsecp256k1_v0_1_0_i128_accum_mul(&cf, v, g3);
    531     haskellsecp256k1_v0_1_0_i128_accum_mul(&cg, q, f3);
    532     haskellsecp256k1_v0_1_0_i128_accum_mul(&cg, r, g3);
    533     f->v[2] = haskellsecp256k1_v0_1_0_i128_to_u64(&cf) & M62; haskellsecp256k1_v0_1_0_i128_rshift(&cf, 62);
    534     g->v[2] = haskellsecp256k1_v0_1_0_i128_to_u64(&cg) & M62; haskellsecp256k1_v0_1_0_i128_rshift(&cg, 62);
    535     /* Compute limb 4 of t*[f,g], and store it as output limb 3. */
    536     haskellsecp256k1_v0_1_0_i128_accum_mul(&cf, u, f4);
    537     haskellsecp256k1_v0_1_0_i128_accum_mul(&cf, v, g4);
    538     haskellsecp256k1_v0_1_0_i128_accum_mul(&cg, q, f4);
    539     haskellsecp256k1_v0_1_0_i128_accum_mul(&cg, r, g4);
    540     f->v[3] = haskellsecp256k1_v0_1_0_i128_to_u64(&cf) & M62; haskellsecp256k1_v0_1_0_i128_rshift(&cf, 62);
    541     g->v[3] = haskellsecp256k1_v0_1_0_i128_to_u64(&cg) & M62; haskellsecp256k1_v0_1_0_i128_rshift(&cg, 62);
    542     /* What remains is limb 5 of t*[f,g]; store it as output limb 4. */
    543     f->v[4] = haskellsecp256k1_v0_1_0_i128_to_i64(&cf);
    544     g->v[4] = haskellsecp256k1_v0_1_0_i128_to_i64(&cg);
    545 }
    546 
    547 /* Compute (t/2^62) * [f, g], where t is a transition matrix for 62 divsteps.
    548  *
    549  * Version that operates on a variable number of limbs in f and g.
    550  *
    551  * This implements the update_fg function from the explanation.
    552  */
    553 static void haskellsecp256k1_v0_1_0_modinv64_update_fg_62_var(int len, haskellsecp256k1_v0_1_0_modinv64_signed62 *f, haskellsecp256k1_v0_1_0_modinv64_signed62 *g, const haskellsecp256k1_v0_1_0_modinv64_trans2x2 *t) {
    554     const uint64_t M62 = UINT64_MAX >> 2;
    555     const int64_t u = t->u, v = t->v, q = t->q, r = t->r;
    556     int64_t fi, gi;
    557     haskellsecp256k1_v0_1_0_int128 cf, cg;
    558     int i;
    559     VERIFY_CHECK(len > 0);
    560     /* Start computing t*[f,g]. */
    561     fi = f->v[0];
    562     gi = g->v[0];
    563     haskellsecp256k1_v0_1_0_i128_mul(&cf, u, fi);
    564     haskellsecp256k1_v0_1_0_i128_accum_mul(&cf, v, gi);
    565     haskellsecp256k1_v0_1_0_i128_mul(&cg, q, fi);
    566     haskellsecp256k1_v0_1_0_i128_accum_mul(&cg, r, gi);
    567     /* Verify that the bottom 62 bits of the result are zero, and then throw them away. */
    568     VERIFY_CHECK((haskellsecp256k1_v0_1_0_i128_to_u64(&cf) & M62) == 0); haskellsecp256k1_v0_1_0_i128_rshift(&cf, 62);
    569     VERIFY_CHECK((haskellsecp256k1_v0_1_0_i128_to_u64(&cg) & M62) == 0); haskellsecp256k1_v0_1_0_i128_rshift(&cg, 62);
    570     /* Now iteratively compute limb i=1..len of t*[f,g], and store them in output limb i-1 (shifting
    571      * down by 62 bits). */
    572     for (i = 1; i < len; ++i) {
    573         fi = f->v[i];
    574         gi = g->v[i];
    575         haskellsecp256k1_v0_1_0_i128_accum_mul(&cf, u, fi);
    576         haskellsecp256k1_v0_1_0_i128_accum_mul(&cf, v, gi);
    577         haskellsecp256k1_v0_1_0_i128_accum_mul(&cg, q, fi);
    578         haskellsecp256k1_v0_1_0_i128_accum_mul(&cg, r, gi);
    579         f->v[i - 1] = haskellsecp256k1_v0_1_0_i128_to_u64(&cf) & M62; haskellsecp256k1_v0_1_0_i128_rshift(&cf, 62);
    580         g->v[i - 1] = haskellsecp256k1_v0_1_0_i128_to_u64(&cg) & M62; haskellsecp256k1_v0_1_0_i128_rshift(&cg, 62);
    581     }
    582     /* What remains is limb (len) of t*[f,g]; store it as output limb (len-1). */
    583     f->v[len - 1] = haskellsecp256k1_v0_1_0_i128_to_i64(&cf);
    584     g->v[len - 1] = haskellsecp256k1_v0_1_0_i128_to_i64(&cg);
    585 }
    586 
    587 /* Compute the inverse of x modulo modinfo->modulus, and replace x with it (constant time in x). */
    588 static void haskellsecp256k1_v0_1_0_modinv64(haskellsecp256k1_v0_1_0_modinv64_signed62 *x, const haskellsecp256k1_v0_1_0_modinv64_modinfo *modinfo) {
    589     /* Start with d=0, e=1, f=modulus, g=x, zeta=-1. */
    590     haskellsecp256k1_v0_1_0_modinv64_signed62 d = {{0, 0, 0, 0, 0}};
    591     haskellsecp256k1_v0_1_0_modinv64_signed62 e = {{1, 0, 0, 0, 0}};
    592     haskellsecp256k1_v0_1_0_modinv64_signed62 f = modinfo->modulus;
    593     haskellsecp256k1_v0_1_0_modinv64_signed62 g = *x;
    594     int i;
    595     int64_t zeta = -1; /* zeta = -(delta+1/2); delta starts at 1/2. */
    596 
    597     /* Do 10 iterations of 59 divsteps each = 590 divsteps. This suffices for 256-bit inputs. */
    598     for (i = 0; i < 10; ++i) {
    599         /* Compute transition matrix and new zeta after 59 divsteps. */
    600         haskellsecp256k1_v0_1_0_modinv64_trans2x2 t;
    601         zeta = haskellsecp256k1_v0_1_0_modinv64_divsteps_59(zeta, f.v[0], g.v[0], &t);
    602         /* Update d,e using that transition matrix. */
    603         haskellsecp256k1_v0_1_0_modinv64_update_de_62(&d, &e, &t, modinfo);
    604         /* Update f,g using that transition matrix. */
    605         VERIFY_CHECK(haskellsecp256k1_v0_1_0_modinv64_mul_cmp_62(&f, 5, &modinfo->modulus, -1) > 0); /* f > -modulus */
    606         VERIFY_CHECK(haskellsecp256k1_v0_1_0_modinv64_mul_cmp_62(&f, 5, &modinfo->modulus, 1) <= 0); /* f <= modulus */
    607         VERIFY_CHECK(haskellsecp256k1_v0_1_0_modinv64_mul_cmp_62(&g, 5, &modinfo->modulus, -1) > 0); /* g > -modulus */
    608         VERIFY_CHECK(haskellsecp256k1_v0_1_0_modinv64_mul_cmp_62(&g, 5, &modinfo->modulus, 1) < 0);  /* g <  modulus */
    609 
    610         haskellsecp256k1_v0_1_0_modinv64_update_fg_62(&f, &g, &t);
    611 
    612         VERIFY_CHECK(haskellsecp256k1_v0_1_0_modinv64_mul_cmp_62(&f, 5, &modinfo->modulus, -1) > 0); /* f > -modulus */
    613         VERIFY_CHECK(haskellsecp256k1_v0_1_0_modinv64_mul_cmp_62(&f, 5, &modinfo->modulus, 1) <= 0); /* f <= modulus */
    614         VERIFY_CHECK(haskellsecp256k1_v0_1_0_modinv64_mul_cmp_62(&g, 5, &modinfo->modulus, -1) > 0); /* g > -modulus */
    615         VERIFY_CHECK(haskellsecp256k1_v0_1_0_modinv64_mul_cmp_62(&g, 5, &modinfo->modulus, 1) < 0);  /* g <  modulus */
    616     }
    617 
    618     /* At this point sufficient iterations have been performed that g must have reached 0
    619      * and (if g was not originally 0) f must now equal +/- GCD of the initial f, g
    620      * values i.e. +/- 1, and d now contains +/- the modular inverse. */
    621 
    622     /* g == 0 */
    623     VERIFY_CHECK(haskellsecp256k1_v0_1_0_modinv64_mul_cmp_62(&g, 5, &SECP256K1_SIGNED62_ONE, 0) == 0);
    624     /* |f| == 1, or (x == 0 and d == 0 and |f|=modulus) */
    625     VERIFY_CHECK(haskellsecp256k1_v0_1_0_modinv64_mul_cmp_62(&f, 5, &SECP256K1_SIGNED62_ONE, -1) == 0 ||
    626                  haskellsecp256k1_v0_1_0_modinv64_mul_cmp_62(&f, 5, &SECP256K1_SIGNED62_ONE, 1) == 0 ||
    627                  (haskellsecp256k1_v0_1_0_modinv64_mul_cmp_62(x, 5, &SECP256K1_SIGNED62_ONE, 0) == 0 &&
    628                   haskellsecp256k1_v0_1_0_modinv64_mul_cmp_62(&d, 5, &SECP256K1_SIGNED62_ONE, 0) == 0 &&
    629                   (haskellsecp256k1_v0_1_0_modinv64_mul_cmp_62(&f, 5, &modinfo->modulus, 1) == 0 ||
    630                    haskellsecp256k1_v0_1_0_modinv64_mul_cmp_62(&f, 5, &modinfo->modulus, -1) == 0)));
    631 
    632     /* Optionally negate d, normalize to [0,modulus), and return it. */
    633     haskellsecp256k1_v0_1_0_modinv64_normalize_62(&d, f.v[4], modinfo);
    634     *x = d;
    635 }
    636 
    637 /* Compute the inverse of x modulo modinfo->modulus, and replace x with it (variable time). */
    638 static void haskellsecp256k1_v0_1_0_modinv64_var(haskellsecp256k1_v0_1_0_modinv64_signed62 *x, const haskellsecp256k1_v0_1_0_modinv64_modinfo *modinfo) {
    639     /* Start with d=0, e=1, f=modulus, g=x, eta=-1. */
    640     haskellsecp256k1_v0_1_0_modinv64_signed62 d = {{0, 0, 0, 0, 0}};
    641     haskellsecp256k1_v0_1_0_modinv64_signed62 e = {{1, 0, 0, 0, 0}};
    642     haskellsecp256k1_v0_1_0_modinv64_signed62 f = modinfo->modulus;
    643     haskellsecp256k1_v0_1_0_modinv64_signed62 g = *x;
    644 #ifdef VERIFY
    645     int i = 0;
    646 #endif
    647     int j, len = 5;
    648     int64_t eta = -1; /* eta = -delta; delta is initially 1 */
    649     int64_t cond, fn, gn;
    650 
    651     /* Do iterations of 62 divsteps each until g=0. */
    652     while (1) {
    653         /* Compute transition matrix and new eta after 62 divsteps. */
    654         haskellsecp256k1_v0_1_0_modinv64_trans2x2 t;
    655         eta = haskellsecp256k1_v0_1_0_modinv64_divsteps_62_var(eta, f.v[0], g.v[0], &t);
    656         /* Update d,e using that transition matrix. */
    657         haskellsecp256k1_v0_1_0_modinv64_update_de_62(&d, &e, &t, modinfo);
    658         /* Update f,g using that transition matrix. */
    659         VERIFY_CHECK(haskellsecp256k1_v0_1_0_modinv64_mul_cmp_62(&f, len, &modinfo->modulus, -1) > 0); /* f > -modulus */
    660         VERIFY_CHECK(haskellsecp256k1_v0_1_0_modinv64_mul_cmp_62(&f, len, &modinfo->modulus, 1) <= 0); /* f <= modulus */
    661         VERIFY_CHECK(haskellsecp256k1_v0_1_0_modinv64_mul_cmp_62(&g, len, &modinfo->modulus, -1) > 0); /* g > -modulus */
    662         VERIFY_CHECK(haskellsecp256k1_v0_1_0_modinv64_mul_cmp_62(&g, len, &modinfo->modulus, 1) < 0);  /* g <  modulus */
    663 
    664         haskellsecp256k1_v0_1_0_modinv64_update_fg_62_var(len, &f, &g, &t);
    665         /* If the bottom limb of g is zero, there is a chance that g=0. */
    666         if (g.v[0] == 0) {
    667             cond = 0;
    668             /* Check if the other limbs are also 0. */
    669             for (j = 1; j < len; ++j) {
    670                 cond |= g.v[j];
    671             }
    672             /* If so, we're done. */
    673             if (cond == 0) break;
    674         }
    675 
    676         /* Determine if len>1 and limb (len-1) of both f and g is 0 or -1. */
    677         fn = f.v[len - 1];
    678         gn = g.v[len - 1];
    679         cond = ((int64_t)len - 2) >> 63;
    680         cond |= fn ^ (fn >> 63);
    681         cond |= gn ^ (gn >> 63);
    682         /* If so, reduce length, propagating the sign of f and g's top limb into the one below. */
    683         if (cond == 0) {
    684             f.v[len - 2] |= (uint64_t)fn << 62;
    685             g.v[len - 2] |= (uint64_t)gn << 62;
    686             --len;
    687         }
    688 
    689         VERIFY_CHECK(++i < 12); /* We should never need more than 12*62 = 744 divsteps */
    690         VERIFY_CHECK(haskellsecp256k1_v0_1_0_modinv64_mul_cmp_62(&f, len, &modinfo->modulus, -1) > 0); /* f > -modulus */
    691         VERIFY_CHECK(haskellsecp256k1_v0_1_0_modinv64_mul_cmp_62(&f, len, &modinfo->modulus, 1) <= 0); /* f <= modulus */
    692         VERIFY_CHECK(haskellsecp256k1_v0_1_0_modinv64_mul_cmp_62(&g, len, &modinfo->modulus, -1) > 0); /* g > -modulus */
    693         VERIFY_CHECK(haskellsecp256k1_v0_1_0_modinv64_mul_cmp_62(&g, len, &modinfo->modulus, 1) < 0);  /* g <  modulus */
    694     }
    695 
    696     /* At this point g is 0 and (if g was not originally 0) f must now equal +/- GCD of
    697      * the initial f, g values i.e. +/- 1, and d now contains +/- the modular inverse. */
    698 
    699     /* g == 0 */
    700     VERIFY_CHECK(haskellsecp256k1_v0_1_0_modinv64_mul_cmp_62(&g, len, &SECP256K1_SIGNED62_ONE, 0) == 0);
    701     /* |f| == 1, or (x == 0 and d == 0 and |f|=modulus) */
    702     VERIFY_CHECK(haskellsecp256k1_v0_1_0_modinv64_mul_cmp_62(&f, len, &SECP256K1_SIGNED62_ONE, -1) == 0 ||
    703                  haskellsecp256k1_v0_1_0_modinv64_mul_cmp_62(&f, len, &SECP256K1_SIGNED62_ONE, 1) == 0 ||
    704                  (haskellsecp256k1_v0_1_0_modinv64_mul_cmp_62(x, 5, &SECP256K1_SIGNED62_ONE, 0) == 0 &&
    705                   haskellsecp256k1_v0_1_0_modinv64_mul_cmp_62(&d, 5, &SECP256K1_SIGNED62_ONE, 0) == 0 &&
    706                   (haskellsecp256k1_v0_1_0_modinv64_mul_cmp_62(&f, len, &modinfo->modulus, 1) == 0 ||
    707                    haskellsecp256k1_v0_1_0_modinv64_mul_cmp_62(&f, len, &modinfo->modulus, -1) == 0)));
    708 
    709     /* Optionally negate d, normalize to [0,modulus), and return it. */
    710     haskellsecp256k1_v0_1_0_modinv64_normalize_62(&d, f.v[len - 1], modinfo);
    711     *x = d;
    712 }
    713 
    714 /* Do up to 25 iterations of 62 posdivsteps (up to 1550 steps; more is extremely rare) each until f=1.
    715  * In VERIFY mode use a lower number of iterations (744, close to the median 756), so failure actually occurs. */
    716 #ifdef VERIFY
    717 #define JACOBI64_ITERATIONS 12
    718 #else
    719 #define JACOBI64_ITERATIONS 25
    720 #endif
    721 
    722 /* Compute the Jacobi symbol of x modulo modinfo->modulus (variable time). gcd(x,modulus) must be 1. */
    723 static int haskellsecp256k1_v0_1_0_jacobi64_maybe_var(const haskellsecp256k1_v0_1_0_modinv64_signed62 *x, const haskellsecp256k1_v0_1_0_modinv64_modinfo *modinfo) {
    724     /* Start with f=modulus, g=x, eta=-1. */
    725     haskellsecp256k1_v0_1_0_modinv64_signed62 f = modinfo->modulus;
    726     haskellsecp256k1_v0_1_0_modinv64_signed62 g = *x;
    727     int j, len = 5;
    728     int64_t eta = -1; /* eta = -delta; delta is initially 1 */
    729     int64_t cond, fn, gn;
    730     int jac = 0;
    731     int count;
    732 
    733     /* The input limbs must all be non-negative. */
    734     VERIFY_CHECK(g.v[0] >= 0 && g.v[1] >= 0 && g.v[2] >= 0 && g.v[3] >= 0 && g.v[4] >= 0);
    735 
    736     /* If x > 0, then if the loop below converges, it converges to f=g=gcd(x,modulus). Since we
    737      * require that gcd(x,modulus)=1 and modulus>=3, x cannot be 0. Thus, we must reach f=1 (or
    738      * time out). */
    739     VERIFY_CHECK((g.v[0] | g.v[1] | g.v[2] | g.v[3] | g.v[4]) != 0);
    740 
    741     for (count = 0; count < JACOBI64_ITERATIONS; ++count) {
    742         /* Compute transition matrix and new eta after 62 posdivsteps. */
    743         haskellsecp256k1_v0_1_0_modinv64_trans2x2 t;
    744         eta = haskellsecp256k1_v0_1_0_modinv64_posdivsteps_62_var(eta, f.v[0] | ((uint64_t)f.v[1] << 62), g.v[0] | ((uint64_t)g.v[1] << 62), &t, &jac);
    745         /* Update f,g using that transition matrix. */
    746         VERIFY_CHECK(haskellsecp256k1_v0_1_0_modinv64_mul_cmp_62(&f, len, &modinfo->modulus, 0) > 0); /* f > 0 */
    747         VERIFY_CHECK(haskellsecp256k1_v0_1_0_modinv64_mul_cmp_62(&f, len, &modinfo->modulus, 1) <= 0); /* f <= modulus */
    748         VERIFY_CHECK(haskellsecp256k1_v0_1_0_modinv64_mul_cmp_62(&g, len, &modinfo->modulus, 0) > 0); /* g > 0 */
    749         VERIFY_CHECK(haskellsecp256k1_v0_1_0_modinv64_mul_cmp_62(&g, len, &modinfo->modulus, 1) < 0);  /* g < modulus */
    750 
    751         haskellsecp256k1_v0_1_0_modinv64_update_fg_62_var(len, &f, &g, &t);
    752         /* If the bottom limb of f is 1, there is a chance that f=1. */
    753         if (f.v[0] == 1) {
    754             cond = 0;
    755             /* Check if the other limbs are also 0. */
    756             for (j = 1; j < len; ++j) {
    757                 cond |= f.v[j];
    758             }
    759             /* If so, we're done. When f=1, the Jacobi symbol (g | f)=1. */
    760             if (cond == 0) return 1 - 2*(jac & 1);
    761         }
    762 
    763         /* Determine if len>1 and limb (len-1) of both f and g is 0. */
    764         fn = f.v[len - 1];
    765         gn = g.v[len - 1];
    766         cond = ((int64_t)len - 2) >> 63;
    767         cond |= fn;
    768         cond |= gn;
    769         /* If so, reduce length. */
    770         if (cond == 0) --len;
    771 
    772         VERIFY_CHECK(haskellsecp256k1_v0_1_0_modinv64_mul_cmp_62(&f, len, &modinfo->modulus, 0) > 0); /* f > 0 */
    773         VERIFY_CHECK(haskellsecp256k1_v0_1_0_modinv64_mul_cmp_62(&f, len, &modinfo->modulus, 1) <= 0); /* f <= modulus */
    774         VERIFY_CHECK(haskellsecp256k1_v0_1_0_modinv64_mul_cmp_62(&g, len, &modinfo->modulus, 0) > 0); /* g > 0 */
    775         VERIFY_CHECK(haskellsecp256k1_v0_1_0_modinv64_mul_cmp_62(&g, len, &modinfo->modulus, 1) < 0);  /* g < modulus */
    776     }
    777 
    778     /* The loop failed to converge to f=g after 1550 iterations. Return 0, indicating unknown result. */
    779     return 0;
    780 }
    781 
    782 #endif /* SECP256K1_MODINV64_IMPL_H */